Mhamed Elbouhi, Mohamed Ouabane, Kamal Tabti, Hassan Badaoui, Oumayma Abdessadak, Moulay Ahfid El Alaouy, Khalid Elkamel, Tahar Lakhlifi, Abdelouahid Sbai, Mohammed Aziz Ajana, Mohammed Bouachrine
{"title":"基于 1,2,3-三唑的 VEGFR-2 抑制剂的计算评估:抗血管生成潜力和药代动力学评估。","authors":"Mhamed Elbouhi, Mohamed Ouabane, Kamal Tabti, Hassan Badaoui, Oumayma Abdessadak, Moulay Ahfid El Alaouy, Khalid Elkamel, Tahar Lakhlifi, Abdelouahid Sbai, Mohammed Aziz Ajana, Mohammed Bouachrine","doi":"10.1080/07391102.2023.2301686","DOIUrl":null,"url":null,"abstract":"<p><p>The vascular endothelial growth factor (VEGF) and its cell surface receptor, as well as the human VEGFR-2 domain kinase, are some of the signaling pathways that have received the most attention in this field. This study aimed to identify novel molecules as VEGFR-2 inhibitors using 3D-QSAR modeling based on 1,2,3-triazole. Docking studies and dynamic simulations were performed to analyze novel interactions with the inhibitors and validate the molecular docking, dynamic simulations, and ADMET analyses. The optimized CoMSIA/SEH model showed good statistical results, and molecular docking and molecular dynamics simulations demonstrated stability of M3 ligand with the receptor and provided insight into ligand-receptor interactions. The newly developed compounds performed well in ADMET evaluations and showed promising results using Lipinski's rule of five, suggesting that the molecule M3 could be a useful anti-angiogenesis agent. In conclusion, this study provides insights into the structure-activity relationship of VEGFR-2 inhibitors and identifies M3 as a potential new anti-angiogenesis drug. The methodology used in this study can be applied to other similar drug targets to discover new and potent inhibitors.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"2549-2559"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational evaluation of 1,2,3-triazole-based VEGFR-2 inhibitors: anti-angiogenesis potential and pharmacokinetic assessment.\",\"authors\":\"Mhamed Elbouhi, Mohamed Ouabane, Kamal Tabti, Hassan Badaoui, Oumayma Abdessadak, Moulay Ahfid El Alaouy, Khalid Elkamel, Tahar Lakhlifi, Abdelouahid Sbai, Mohammed Aziz Ajana, Mohammed Bouachrine\",\"doi\":\"10.1080/07391102.2023.2301686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vascular endothelial growth factor (VEGF) and its cell surface receptor, as well as the human VEGFR-2 domain kinase, are some of the signaling pathways that have received the most attention in this field. This study aimed to identify novel molecules as VEGFR-2 inhibitors using 3D-QSAR modeling based on 1,2,3-triazole. Docking studies and dynamic simulations were performed to analyze novel interactions with the inhibitors and validate the molecular docking, dynamic simulations, and ADMET analyses. The optimized CoMSIA/SEH model showed good statistical results, and molecular docking and molecular dynamics simulations demonstrated stability of M3 ligand with the receptor and provided insight into ligand-receptor interactions. The newly developed compounds performed well in ADMET evaluations and showed promising results using Lipinski's rule of five, suggesting that the molecule M3 could be a useful anti-angiogenesis agent. In conclusion, this study provides insights into the structure-activity relationship of VEGFR-2 inhibitors and identifies M3 as a potential new anti-angiogenesis drug. The methodology used in this study can be applied to other similar drug targets to discover new and potent inhibitors.</p>\",\"PeriodicalId\":15272,\"journal\":{\"name\":\"Journal of Biomolecular Structure & Dynamics\",\"volume\":\" \",\"pages\":\"2549-2559\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular Structure & Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07391102.2023.2301686\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2023.2301686","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Computational evaluation of 1,2,3-triazole-based VEGFR-2 inhibitors: anti-angiogenesis potential and pharmacokinetic assessment.
The vascular endothelial growth factor (VEGF) and its cell surface receptor, as well as the human VEGFR-2 domain kinase, are some of the signaling pathways that have received the most attention in this field. This study aimed to identify novel molecules as VEGFR-2 inhibitors using 3D-QSAR modeling based on 1,2,3-triazole. Docking studies and dynamic simulations were performed to analyze novel interactions with the inhibitors and validate the molecular docking, dynamic simulations, and ADMET analyses. The optimized CoMSIA/SEH model showed good statistical results, and molecular docking and molecular dynamics simulations demonstrated stability of M3 ligand with the receptor and provided insight into ligand-receptor interactions. The newly developed compounds performed well in ADMET evaluations and showed promising results using Lipinski's rule of five, suggesting that the molecule M3 could be a useful anti-angiogenesis agent. In conclusion, this study provides insights into the structure-activity relationship of VEGFR-2 inhibitors and identifies M3 as a potential new anti-angiogenesis drug. The methodology used in this study can be applied to other similar drug targets to discover new and potent inhibitors.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.