了解 Galectin-1 在心力衰竭中的作用:全面叙述性综述。

IF 2.4 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Mohammad Javad Sotoudeheian, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Reza Azarbad, Soroush Nematollahi, Mehdi Taghizadeh, Hamidreza Pazoki-Toroudi
{"title":"了解 Galectin-1 在心力衰竭中的作用:全面叙述性综述。","authors":"Mohammad Javad Sotoudeheian, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Reza Azarbad, Soroush Nematollahi, Mehdi Taghizadeh, Hamidreza Pazoki-Toroudi","doi":"10.2174/011573403X274886231227111902","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is the fastest-growing cardiovascular condition worldwide. The immune system may play a role in the development of HF since this condition is associated with elevated pro-inflammatory cytokine levels. HF is a life-threatening disease, and there is an increasing demand for diagnostic biomarkers, prognostic factors, and therapeutic agents that can help treat it. Galectin-1 (Gal-1) is the prototype galectin of the lectin family. Multiple signal transduction pathways are regulated by Ras proteins, which act as a molecular switch in cells. Gal-1 regulates T and B cell activation, differentiation, and survival. Gal-1 has been linked to inflammation. Activated T cells produce Gal-1 through an autocrine apoptotic mechanism involving MEK1/ERK and p38 MAPK. In the cardiovascular system, atherosclerosis is facilitated by Gal-1. Heart disease, myocardial infarction, hypertension, and stroke can be caused by atherosclerotic plaque. HF and heart hypertrophy are caused by decreased cardiac L-type Ca2+ channel activity. Deregulation of Gal-1 and CaV1.2 in pathological cardiac hypertrophy suggests a possible target for anti-hypertrophic therapy. Rat hypertrophic cardiomyocytes express Gal-1 and CaV1.2 channels simultaneously. It has been reported that diastolic dysfunction (DD) is associated with elevated Gal-1 levels. The high Gal-1 level in subjects led to the lowest cumulative survival as a composite endpoint. Incidences of HF, DD, and serum Gal-1 levels correlated significantly. The ejection fraction was negatively correlated with Gal-1 and CRP concentrations. Based on two different approaches in mice and humans, Gal-1 was identified as a potential mediator of HF.</p>","PeriodicalId":10832,"journal":{"name":"Current Cardiology Reviews","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071677/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding the Role of Galectin-1 in Heart Failure: A Comprehensive Narrative Review.\",\"authors\":\"Mohammad Javad Sotoudeheian, Seyed-Mohamad-Sadegh Mirahmadi, Mohammad Pirhayati, Reza Azarbad, Soroush Nematollahi, Mehdi Taghizadeh, Hamidreza Pazoki-Toroudi\",\"doi\":\"10.2174/011573403X274886231227111902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure (HF) is the fastest-growing cardiovascular condition worldwide. The immune system may play a role in the development of HF since this condition is associated with elevated pro-inflammatory cytokine levels. HF is a life-threatening disease, and there is an increasing demand for diagnostic biomarkers, prognostic factors, and therapeutic agents that can help treat it. Galectin-1 (Gal-1) is the prototype galectin of the lectin family. Multiple signal transduction pathways are regulated by Ras proteins, which act as a molecular switch in cells. Gal-1 regulates T and B cell activation, differentiation, and survival. Gal-1 has been linked to inflammation. Activated T cells produce Gal-1 through an autocrine apoptotic mechanism involving MEK1/ERK and p38 MAPK. In the cardiovascular system, atherosclerosis is facilitated by Gal-1. Heart disease, myocardial infarction, hypertension, and stroke can be caused by atherosclerotic plaque. HF and heart hypertrophy are caused by decreased cardiac L-type Ca2+ channel activity. Deregulation of Gal-1 and CaV1.2 in pathological cardiac hypertrophy suggests a possible target for anti-hypertrophic therapy. Rat hypertrophic cardiomyocytes express Gal-1 and CaV1.2 channels simultaneously. It has been reported that diastolic dysfunction (DD) is associated with elevated Gal-1 levels. The high Gal-1 level in subjects led to the lowest cumulative survival as a composite endpoint. Incidences of HF, DD, and serum Gal-1 levels correlated significantly. The ejection fraction was negatively correlated with Gal-1 and CRP concentrations. Based on two different approaches in mice and humans, Gal-1 was identified as a potential mediator of HF.</p>\",\"PeriodicalId\":10832,\"journal\":{\"name\":\"Current Cardiology Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11071677/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Cardiology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/011573403X274886231227111902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/011573403X274886231227111902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是全球增长最快的心血管疾病。由于心力衰竭与促炎细胞因子水平升高有关,因此免疫系统可能在心力衰竭的发病过程中起着一定的作用。心房颤动是一种危及生命的疾病,因此对诊断生物标志物、预后因素和治疗药物的需求与日俱增。凝集素-1(Gal-1)是凝集素家族中的原型凝集素。多种信号转导途径受 Ras 蛋白调控,Ras 蛋白在细胞中起着分子开关的作用。Gal-1 可调节 T 细胞和 B 细胞的活化、分化和存活。Gal-1 与炎症有关。活化的 T 细胞通过涉及 MEK1/ERK 和 p38 MAPK 的自分泌凋亡机制产生 Gal-1。在心血管系统中,Gal-1 会促进动脉粥样硬化。动脉粥样硬化斑块可导致心脏病、心肌梗塞、高血压和中风。心房颤动和心脏肥大是由心脏 L 型 Ca2+ 通道活性降低引起的。病理心肌肥厚中 Gal-1 和 CaV1.2 的失调为抗肥厚治疗提供了可能的靶点。大鼠肥厚型心肌细胞同时表达 Gal-1 和 CaV1.2 通道。据报道,舒张功能障碍(DD)与 Gal-1 水平升高有关。受试者的 Gal-1 水平较高,导致作为综合终点的累积存活率最低。心房颤动、舒张功能障碍的发生率与血清 Gal-1 水平有显著相关性。射血分数与 Gal-1 和 CRP 浓度呈负相关。根据在小鼠和人类中采用的两种不同方法,Gal-1被确定为高血压的潜在介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the Role of Galectin-1 in Heart Failure: A Comprehensive Narrative Review.

Heart failure (HF) is the fastest-growing cardiovascular condition worldwide. The immune system may play a role in the development of HF since this condition is associated with elevated pro-inflammatory cytokine levels. HF is a life-threatening disease, and there is an increasing demand for diagnostic biomarkers, prognostic factors, and therapeutic agents that can help treat it. Galectin-1 (Gal-1) is the prototype galectin of the lectin family. Multiple signal transduction pathways are regulated by Ras proteins, which act as a molecular switch in cells. Gal-1 regulates T and B cell activation, differentiation, and survival. Gal-1 has been linked to inflammation. Activated T cells produce Gal-1 through an autocrine apoptotic mechanism involving MEK1/ERK and p38 MAPK. In the cardiovascular system, atherosclerosis is facilitated by Gal-1. Heart disease, myocardial infarction, hypertension, and stroke can be caused by atherosclerotic plaque. HF and heart hypertrophy are caused by decreased cardiac L-type Ca2+ channel activity. Deregulation of Gal-1 and CaV1.2 in pathological cardiac hypertrophy suggests a possible target for anti-hypertrophic therapy. Rat hypertrophic cardiomyocytes express Gal-1 and CaV1.2 channels simultaneously. It has been reported that diastolic dysfunction (DD) is associated with elevated Gal-1 levels. The high Gal-1 level in subjects led to the lowest cumulative survival as a composite endpoint. Incidences of HF, DD, and serum Gal-1 levels correlated significantly. The ejection fraction was negatively correlated with Gal-1 and CRP concentrations. Based on two different approaches in mice and humans, Gal-1 was identified as a potential mediator of HF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Cardiology Reviews
Current Cardiology Reviews CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.70
自引率
10.50%
发文量
117
期刊介绍: Current Cardiology Reviews publishes frontier reviews of high quality on all the latest advances on the practical and clinical approach to the diagnosis and treatment of cardiovascular disease. All relevant areas are covered by the journal including arrhythmia, congestive heart failure, cardiomyopathy, congenital heart disease, drugs, methodology, pacing, and preventive cardiology. The journal is essential reading for all researchers and clinicians in cardiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信