CircSKA3 与缺血性脑卒中患者颅外动脉狭窄和斑块不稳定性的风险有关。

IF 3.6 4区 医学 Q3 CELL BIOLOGY
Ning Zhu, Ziyi Wang, Mingfeng Tao, Yongxin Li, Lihua Shen, Tian Xu
{"title":"CircSKA3 与缺血性脑卒中患者颅外动脉狭窄和斑块不稳定性的风险有关。","authors":"Ning Zhu, Ziyi Wang, Mingfeng Tao, Yongxin Li, Lihua Shen, Tian Xu","doi":"10.1007/s10571-023-01449-y","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA circSKA3 (spindle and kinetochore-related complex subunit 3) has been identified as a prognostic factor in ischemic stroke. The objective of this study was to investigate the association of circSKA3 with the risk of extracranial artery stenosis (ECAS) and plaque instability in patients with ischemic stroke. We constructed a competing endogenous RNA (ceRNA) network regulated by circSKA3 based on differentially expressed circRNAs and mRNAs between five patients and five controls. Gene Ontology (GO) analysis was performed on the 65 mRNAs within the network, revealing their primary involvement in inflammatory biological processes. A total of 284 ischemic stroke patients who underwent various imaging examinations were included for further analyses. Each 1 standard deviation increase in the log-transformed blood circSKA3 level was associated with a 56.3% increased risk of ECAS (P = 0.005) and a 142.1% increased risk of plaque instability (P = 0.005). Patients in the top tertile of circSKA3 had a 2.418-fold (P < 0.05) risk of ECAS compared to the reference group (P for trend = 0.02). CircSKA3 demonstrated a significant but limited ability to discriminate the presence of ECAS (AUC = 0.594, P = 0.015) and unstable carotid plaques (AUC = 0.647, P = 0.034). CircSKA3 improved the reclassification power for ECAS (NRI: 9.86%, P = 0.012; IDI: 2.97%, P = 0.007) and plaque instability (NRI: 36.73%, P = 0.008; IDI: 7.05%, P = 0.04) beyond conventional risk factors. CircSKA3 played an important role in the pathogenesis of ischemic stroke by influencing inflammatory biological processes. Increased circSKA3 was positively associated with the risk of ECAS and plaque instability among ischemic stroke patients.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircSKA3 is Associated With the Risk of Extracranial Artery Stenosis and Plaque Instability Among Ischemic Stroke Patients.\",\"authors\":\"Ning Zhu, Ziyi Wang, Mingfeng Tao, Yongxin Li, Lihua Shen, Tian Xu\",\"doi\":\"10.1007/s10571-023-01449-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNA circSKA3 (spindle and kinetochore-related complex subunit 3) has been identified as a prognostic factor in ischemic stroke. The objective of this study was to investigate the association of circSKA3 with the risk of extracranial artery stenosis (ECAS) and plaque instability in patients with ischemic stroke. We constructed a competing endogenous RNA (ceRNA) network regulated by circSKA3 based on differentially expressed circRNAs and mRNAs between five patients and five controls. Gene Ontology (GO) analysis was performed on the 65 mRNAs within the network, revealing their primary involvement in inflammatory biological processes. A total of 284 ischemic stroke patients who underwent various imaging examinations were included for further analyses. Each 1 standard deviation increase in the log-transformed blood circSKA3 level was associated with a 56.3% increased risk of ECAS (P = 0.005) and a 142.1% increased risk of plaque instability (P = 0.005). Patients in the top tertile of circSKA3 had a 2.418-fold (P < 0.05) risk of ECAS compared to the reference group (P for trend = 0.02). CircSKA3 demonstrated a significant but limited ability to discriminate the presence of ECAS (AUC = 0.594, P = 0.015) and unstable carotid plaques (AUC = 0.647, P = 0.034). CircSKA3 improved the reclassification power for ECAS (NRI: 9.86%, P = 0.012; IDI: 2.97%, P = 0.007) and plaque instability (NRI: 36.73%, P = 0.008; IDI: 7.05%, P = 0.04) beyond conventional risk factors. CircSKA3 played an important role in the pathogenesis of ischemic stroke by influencing inflammatory biological processes. Increased circSKA3 was positively associated with the risk of ECAS and plaque instability among ischemic stroke patients.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-023-01449-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-023-01449-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环状 RNA circSKA3(纺锤体和着丝点相关复合物亚基 3)已被确定为缺血性中风的预后因素。本研究旨在探讨 circSKA3 与缺血性中风患者颅外动脉狭窄(ECAS)和斑块不稳定性风险的关系。我们根据五名患者和五名对照组之间差异表达的 circRNA 和 mRNA,构建了受 circSKA3 调控的竞争性内源性 RNA(ceRNA)网络。对网络中的 65 个 mRNA 进行了基因本体(GO)分析,发现它们主要参与炎症生物过程。共有 284 名接受了各种影像检查的缺血性中风患者被纳入了进一步的分析。血液中 circSKA3 水平对数变换后每增加 1 个标准差,ECAS 风险增加 56.3%(P = 0.005),斑块不稳定风险增加 142.1%(P = 0.005)。血液中 circSKA3 水平最高的三分位数患者的 ECAS 风险增加了 2.418 倍(P = 0.005),斑块不稳定风险增加了 142.1%(P = 0.005)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CircSKA3 is Associated With the Risk of Extracranial Artery Stenosis and Plaque Instability Among Ischemic Stroke Patients.

Circular RNA circSKA3 (spindle and kinetochore-related complex subunit 3) has been identified as a prognostic factor in ischemic stroke. The objective of this study was to investigate the association of circSKA3 with the risk of extracranial artery stenosis (ECAS) and plaque instability in patients with ischemic stroke. We constructed a competing endogenous RNA (ceRNA) network regulated by circSKA3 based on differentially expressed circRNAs and mRNAs between five patients and five controls. Gene Ontology (GO) analysis was performed on the 65 mRNAs within the network, revealing their primary involvement in inflammatory biological processes. A total of 284 ischemic stroke patients who underwent various imaging examinations were included for further analyses. Each 1 standard deviation increase in the log-transformed blood circSKA3 level was associated with a 56.3% increased risk of ECAS (P = 0.005) and a 142.1% increased risk of plaque instability (P = 0.005). Patients in the top tertile of circSKA3 had a 2.418-fold (P < 0.05) risk of ECAS compared to the reference group (P for trend = 0.02). CircSKA3 demonstrated a significant but limited ability to discriminate the presence of ECAS (AUC = 0.594, P = 0.015) and unstable carotid plaques (AUC = 0.647, P = 0.034). CircSKA3 improved the reclassification power for ECAS (NRI: 9.86%, P = 0.012; IDI: 2.97%, P = 0.007) and plaque instability (NRI: 36.73%, P = 0.008; IDI: 7.05%, P = 0.04) beyond conventional risk factors. CircSKA3 played an important role in the pathogenesis of ischemic stroke by influencing inflammatory biological processes. Increased circSKA3 was positively associated with the risk of ECAS and plaque instability among ischemic stroke patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信