等价定位和全息学

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Dario Martelli, Alberto Zaffaroni
{"title":"等价定位和全息学","authors":"Dario Martelli,&nbsp;Alberto Zaffaroni","doi":"10.1007/s11005-023-01752-1","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the theory of equivariant localization focussing on applications relevant for holography. We consider geometries comprising compact and non-compact toric orbifolds, as well as more general non-compact toric Calabi–Yau singularities. A key object in our constructions is the <i>equivariant volume</i>, for which we describe two methods of evaluation: the Berline–Vergne fixed point formula and the Molien–Weyl formula, supplemented by the Jeffrey–Kirwan prescription. We present two applications in supersymmetric field theories. Firstly, we describe a method for integrating the anomaly polynomial of SCFTs on compact toric orbifolds. Secondly, we discuss equivariant orbifold indices that are expected to play a key role in the computation of supersymmetric partition functions. In the context of supergravity, we propose that the equivariant volume can be used to characterize universally the geometry of a large class of supersymmetric solutions. As an illustration, we employ equivariant localization to prove the factorization in gravitational blocks of various supergravity free energies, recovering previous results as well as obtaining generalizations.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-023-01752-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Equivariant localization and holography\",\"authors\":\"Dario Martelli,&nbsp;Alberto Zaffaroni\",\"doi\":\"10.1007/s11005-023-01752-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss the theory of equivariant localization focussing on applications relevant for holography. We consider geometries comprising compact and non-compact toric orbifolds, as well as more general non-compact toric Calabi–Yau singularities. A key object in our constructions is the <i>equivariant volume</i>, for which we describe two methods of evaluation: the Berline–Vergne fixed point formula and the Molien–Weyl formula, supplemented by the Jeffrey–Kirwan prescription. We present two applications in supersymmetric field theories. Firstly, we describe a method for integrating the anomaly polynomial of SCFTs on compact toric orbifolds. Secondly, we discuss equivariant orbifold indices that are expected to play a key role in the computation of supersymmetric partition functions. In the context of supergravity, we propose that the equivariant volume can be used to characterize universally the geometry of a large class of supersymmetric solutions. As an illustration, we employ equivariant localization to prove the factorization in gravitational blocks of various supergravity free energies, recovering previous results as well as obtaining generalizations.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-023-01752-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-023-01752-1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-023-01752-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了等变局部化理论,重点是与全息相关的应用。我们考虑的几何体包括紧凑和非紧凑环状轨道,以及更一般的非紧凑环状卡拉比-尤奇点。我们构造中的一个关键对象是等变体积,为此我们描述了两种评估方法:Berline-Vergne 定点公式和 Molien-Weyl 公式,并辅以 Jeffrey-Kirwan 方程。我们介绍了超对称场论中的两个应用。首先,我们描述了在紧凑环轨道上积分 SCFT 异常多项式的方法。其次,我们讨论了有望在计算超对称分区函数中发挥关键作用的等变轨道圈指数。在超引力的背景下,我们提出等变体积可以用来普遍描述一大类超对称解的几何特征。举例来说,我们利用等变局部证明了各种超引力自由能在引力块中的因式分解,恢复了以前的结果并得到了推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Equivariant localization and holography

Equivariant localization and holography

We discuss the theory of equivariant localization focussing on applications relevant for holography. We consider geometries comprising compact and non-compact toric orbifolds, as well as more general non-compact toric Calabi–Yau singularities. A key object in our constructions is the equivariant volume, for which we describe two methods of evaluation: the Berline–Vergne fixed point formula and the Molien–Weyl formula, supplemented by the Jeffrey–Kirwan prescription. We present two applications in supersymmetric field theories. Firstly, we describe a method for integrating the anomaly polynomial of SCFTs on compact toric orbifolds. Secondly, we discuss equivariant orbifold indices that are expected to play a key role in the computation of supersymmetric partition functions. In the context of supergravity, we propose that the equivariant volume can be used to characterize universally the geometry of a large class of supersymmetric solutions. As an illustration, we employ equivariant localization to prove the factorization in gravitational blocks of various supergravity free energies, recovering previous results as well as obtaining generalizations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信