表示多项式协方差型换向关系的 \(L_p\) 空间上的线性积分算子

Pub Date : 2024-01-08 DOI:10.1007/s13370-023-01153-6
Domingos Djinja, Sergei Silvestrov, Alex Behakanira Tumwesigye
{"title":"表示多项式协方差型换向关系的 \\(L_p\\) 空间上的线性积分算子","authors":"Domingos Djinja,&nbsp;Sergei Silvestrov,&nbsp;Alex Behakanira Tumwesigye","doi":"10.1007/s13370-023-01153-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present methods for constructing representations of polynomial covariance type commutation relations <span>\\(AB=BF(A)\\)</span> by linear integral operators in Banach spaces <span>\\(L_p\\)</span>. We derive necessary and sufficient conditions on the kernel functions for the integral operators to satisfy the covariance type commutation relation for general polynomials <i>F</i>, as well as for important cases, when <i>F</i> is arbitrary affine or quadratic polynomial, or arbitrary monomial of any degree. Using the obtained general conditions on the kernels, we construct concrete examples of representations of the covariance type commutation relations by integral operators on <span>\\(L_p\\)</span>. Also, we derive useful general reordering formulas for the integral operators representing the covariance type commutation relations, in terms of the kernel functions.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-023-01153-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Linear integral operators on \\\\(L_p\\\\) spaces representing polynomial covariance type commutation relations\",\"authors\":\"Domingos Djinja,&nbsp;Sergei Silvestrov,&nbsp;Alex Behakanira Tumwesigye\",\"doi\":\"10.1007/s13370-023-01153-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we present methods for constructing representations of polynomial covariance type commutation relations <span>\\\\(AB=BF(A)\\\\)</span> by linear integral operators in Banach spaces <span>\\\\(L_p\\\\)</span>. We derive necessary and sufficient conditions on the kernel functions for the integral operators to satisfy the covariance type commutation relation for general polynomials <i>F</i>, as well as for important cases, when <i>F</i> is arbitrary affine or quadratic polynomial, or arbitrary monomial of any degree. Using the obtained general conditions on the kernels, we construct concrete examples of representations of the covariance type commutation relations by integral operators on <span>\\\\(L_p\\\\)</span>. Also, we derive useful general reordering formulas for the integral operators representing the covariance type commutation relations, in terms of the kernel functions.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-023-01153-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-023-01153-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01153-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了通过线性积分算子在巴拿赫空间 \(L_p\)中构建多项式协方差型换向关系 \(AB=BF(A)\)的方法。我们推导了积分算子满足一般多项式 F 的协方差型换向关系的核函数的必要条件和充分条件,以及当 F 是任意仿射或二次多项式或任意度数的单项式时的重要情况。利用得到的核的一般条件,我们通过 \(L_p\) 上的积分算子构造了协方差型换向关系的具体表示例证。同时,我们还从核函数的角度推导出了代表协方差型换向关系的积分算子的有用的一般重排序公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Linear integral operators on \(L_p\) spaces representing polynomial covariance type commutation relations

In this work, we present methods for constructing representations of polynomial covariance type commutation relations \(AB=BF(A)\) by linear integral operators in Banach spaces \(L_p\). We derive necessary and sufficient conditions on the kernel functions for the integral operators to satisfy the covariance type commutation relation for general polynomials F, as well as for important cases, when F is arbitrary affine or quadratic polynomial, or arbitrary monomial of any degree. Using the obtained general conditions on the kernels, we construct concrete examples of representations of the covariance type commutation relations by integral operators on \(L_p\). Also, we derive useful general reordering formulas for the integral operators representing the covariance type commutation relations, in terms of the kernel functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信