Jianjian Zhu , Zhongqing Su , Qingqing Wang , Runze Hao , Zifeng Lan , Frankie Siu-fai Chan , Jiaqiang Li , Sidney Wing-fai Wong
{"title":"贝叶斯优化软关注机制增强的迁移学习为选择性激光熔化的工艺参数影响估计和表面质量预测赋能","authors":"Jianjian Zhu , Zhongqing Su , Qingqing Wang , Runze Hao , Zifeng Lan , Frankie Siu-fai Chan , Jiaqiang Li , Sidney Wing-fai Wong","doi":"10.1016/j.compind.2023.104066","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Additive Manufacturing (AM), particularly </span>Selective Laser Melting<span> (SLM), has revolutionized the industrial manufacturing sector owing to its remarkable design flexibility and precision. However, it is well known that slight changes in SLM process parameters may highly affect the surface quality of the as-built product. In this paper, we investigate the influence of SLM printing parameters (laser power, </span></span>laser scanning speed<span><span>, layer thickness, and hatch distance) on surface quality and develop a predictive model for surface quality based on the given printing parameters. The developed model is constructed by a Bayesian Optimization and soft Attention mechanism-enhanced Transfer learning (BOAT) framework with superior domain adaptability and generalization capability. Through experimental validation, the effectiveness of the BOAT approach in estimating printing parameters and correlating them with surface quality has been verified. The comprehensive methodology, experimental configurations, prediction results, and ensuing discussions are all presented. This study contributes to providing valuable insights and practical implications for improving the competitiveness and impact of SLM in </span>advanced manufacturing by accurately predicting surface quality with specified printing parameters.</span></p></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"156 ","pages":"Article 104066"},"PeriodicalIF":8.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process parameter effects estimation and surface quality prediction for selective laser melting empowered by Bayes optimized soft attention mechanism-enhanced transfer learning\",\"authors\":\"Jianjian Zhu , Zhongqing Su , Qingqing Wang , Runze Hao , Zifeng Lan , Frankie Siu-fai Chan , Jiaqiang Li , Sidney Wing-fai Wong\",\"doi\":\"10.1016/j.compind.2023.104066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Additive Manufacturing (AM), particularly </span>Selective Laser Melting<span> (SLM), has revolutionized the industrial manufacturing sector owing to its remarkable design flexibility and precision. However, it is well known that slight changes in SLM process parameters may highly affect the surface quality of the as-built product. In this paper, we investigate the influence of SLM printing parameters (laser power, </span></span>laser scanning speed<span><span>, layer thickness, and hatch distance) on surface quality and develop a predictive model for surface quality based on the given printing parameters. The developed model is constructed by a Bayesian Optimization and soft Attention mechanism-enhanced Transfer learning (BOAT) framework with superior domain adaptability and generalization capability. Through experimental validation, the effectiveness of the BOAT approach in estimating printing parameters and correlating them with surface quality has been verified. The comprehensive methodology, experimental configurations, prediction results, and ensuing discussions are all presented. This study contributes to providing valuable insights and practical implications for improving the competitiveness and impact of SLM in </span>advanced manufacturing by accurately predicting surface quality with specified printing parameters.</span></p></div>\",\"PeriodicalId\":55219,\"journal\":{\"name\":\"Computers in Industry\",\"volume\":\"156 \",\"pages\":\"Article 104066\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in Industry\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166361523002166\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361523002166","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Process parameter effects estimation and surface quality prediction for selective laser melting empowered by Bayes optimized soft attention mechanism-enhanced transfer learning
Additive Manufacturing (AM), particularly Selective Laser Melting (SLM), has revolutionized the industrial manufacturing sector owing to its remarkable design flexibility and precision. However, it is well known that slight changes in SLM process parameters may highly affect the surface quality of the as-built product. In this paper, we investigate the influence of SLM printing parameters (laser power, laser scanning speed, layer thickness, and hatch distance) on surface quality and develop a predictive model for surface quality based on the given printing parameters. The developed model is constructed by a Bayesian Optimization and soft Attention mechanism-enhanced Transfer learning (BOAT) framework with superior domain adaptability and generalization capability. Through experimental validation, the effectiveness of the BOAT approach in estimating printing parameters and correlating them with surface quality has been verified. The comprehensive methodology, experimental configurations, prediction results, and ensuing discussions are all presented. This study contributes to providing valuable insights and practical implications for improving the competitiveness and impact of SLM in advanced manufacturing by accurately predicting surface quality with specified printing parameters.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.