Rodrigo Padilla, Vibhav Durgesh, Tao Xing, Anas Nawafleh
{"title":"层流射流中旗状流体与结构相互作用的实验研究及 POD 的应用","authors":"Rodrigo Padilla, Vibhav Durgesh, Tao Xing, Anas Nawafleh","doi":"10.1016/j.jfluidstructs.2023.104040","DOIUrl":null,"url":null,"abstract":"<div><p><span>A fluttering flag in a uniform laminar flow<span><span><span> exhibits complex fluid–structure interaction (FSI) behavior. This investigation experimentally studied aerodynamic load behavior and its connection to the oscillation behavior, flag envelope and fluid flow parameters, and application of </span>Proper Orthogonal Decomposition<span> (POD) to fluid flow data to elucidate changes in flow behavior associated with the changes in oscillation modes and observed drag coefficient values. For this purpose, three flag models with varying lengths were used. The aerodynamic load forces were measured using a high-precision load cell, and two-dimensional </span></span>Particle Image Velocimetry<span> (PIV) was used to quantify the flow field around the flag. The Reynolds number (</span></span></span><span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>), mass ratio (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>), and dimensionless rigidity (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) values were varied between <span><math><mrow><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>12</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>.</mo><mn>48</mn><mo>−</mo><mn>2</mn><mo>.</mo><mn>77</mn></mrow></math></span>, and <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>−</mo><mn>15</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span><span>, respectively. The results showed the linear relationship between drag coefficients with normalized amplitude of oscillation and Strouhal number<span>. The results also showed the connection between observed drag and change in flag oscillation modes. The POD analysis showed that the energy content of the POD modes changed with the change in flag oscillation from mode-2 to mode-3 oscillations. The phase portrait of the first four POD modes also showed a unique interplay of POD modes, resulting in a change in the velocity flow field associated with the change in oscillation modes. The low-order reconstruction using select POD modes and control volume analysis of the velocity flow field showed a connection between POD modes and observed drag.</span></span></p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of flag fluid–structure interaction in a laminar jet and application of POD\",\"authors\":\"Rodrigo Padilla, Vibhav Durgesh, Tao Xing, Anas Nawafleh\",\"doi\":\"10.1016/j.jfluidstructs.2023.104040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A fluttering flag in a uniform laminar flow<span><span><span> exhibits complex fluid–structure interaction (FSI) behavior. This investigation experimentally studied aerodynamic load behavior and its connection to the oscillation behavior, flag envelope and fluid flow parameters, and application of </span>Proper Orthogonal Decomposition<span> (POD) to fluid flow data to elucidate changes in flow behavior associated with the changes in oscillation modes and observed drag coefficient values. For this purpose, three flag models with varying lengths were used. The aerodynamic load forces were measured using a high-precision load cell, and two-dimensional </span></span>Particle Image Velocimetry<span> (PIV) was used to quantify the flow field around the flag. The Reynolds number (</span></span></span><span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>), mass ratio (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>), and dimensionless rigidity (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) values were varied between <span><math><mrow><mn>4</mn><mo>.</mo><mn>4</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>12</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>.</mo><mn>48</mn><mo>−</mo><mn>2</mn><mo>.</mo><mn>77</mn></mrow></math></span>, and <span><math><mrow><mn>1</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>−</mo><mn>15</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span><span>, respectively. The results showed the linear relationship between drag coefficients with normalized amplitude of oscillation and Strouhal number<span>. The results also showed the connection between observed drag and change in flag oscillation modes. The POD analysis showed that the energy content of the POD modes changed with the change in flag oscillation from mode-2 to mode-3 oscillations. The phase portrait of the first four POD modes also showed a unique interplay of POD modes, resulting in a change in the velocity flow field associated with the change in oscillation modes. The low-order reconstruction using select POD modes and control volume analysis of the velocity flow field showed a connection between POD modes and observed drag.</span></span></p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974623002086\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974623002086","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
在均匀层流中飘动的旗帜表现出复杂的流固耦合(FSI)行为。这项研究通过实验研究了空气动力载荷行为及其与振荡行为、旗帜包络和流体流动参数之间的联系,并将适当正交分解(POD)应用于流体流动数据,以阐明与振荡模式变化和观测到的阻力系数值相关的流动行为变化。为此,使用了三个不同长度的旗帜模型。使用高精度称重传感器测量了空气动力负载力,并使用二维粒子图像测速仪(PIV)量化了旗帜周围的流场。雷诺数(Re)、质量比(R1)和无量纲刚度(R2)值分别在 4.4×104-12.3×104、1.48-2.77 和 1.3×10-3-15.1×10-3 之间变化。结果表明,阻力系数与归一化振幅和斯特劳哈尔数之间存在线性关系。结果还显示了观测到的阻力与旗帜振荡模式变化之间的联系。POD 分析表明,POD 模式的能量含量随着旗帜振荡从模式-2 到模式-3 的变化而变化。前四种 POD 模式的相位图也显示了 POD 模式之间独特的相互作用,从而导致了与振荡模式变化相关的速度流场的变化。利用选定的 POD 模式进行的低阶重构和速度流场的控制体积分析表明,POD 模式与观测到的阻力之间存在联系。
Experimental study of flag fluid–structure interaction in a laminar jet and application of POD
A fluttering flag in a uniform laminar flow exhibits complex fluid–structure interaction (FSI) behavior. This investigation experimentally studied aerodynamic load behavior and its connection to the oscillation behavior, flag envelope and fluid flow parameters, and application of Proper Orthogonal Decomposition (POD) to fluid flow data to elucidate changes in flow behavior associated with the changes in oscillation modes and observed drag coefficient values. For this purpose, three flag models with varying lengths were used. The aerodynamic load forces were measured using a high-precision load cell, and two-dimensional Particle Image Velocimetry (PIV) was used to quantify the flow field around the flag. The Reynolds number (), mass ratio (), and dimensionless rigidity () values were varied between , , and , respectively. The results showed the linear relationship between drag coefficients with normalized amplitude of oscillation and Strouhal number. The results also showed the connection between observed drag and change in flag oscillation modes. The POD analysis showed that the energy content of the POD modes changed with the change in flag oscillation from mode-2 to mode-3 oscillations. The phase portrait of the first four POD modes also showed a unique interplay of POD modes, resulting in a change in the velocity flow field associated with the change in oscillation modes. The low-order reconstruction using select POD modes and control volume analysis of the velocity flow field showed a connection between POD modes and observed drag.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.