{"title":"二氧化硅改性对 Nafion 复合膜性能的影响","authors":"Shuangjie Liu, Jialin Yu, Yongping Hao, Feng Gao, Mo Zhou, Lijun Zhao","doi":"10.1155/2024/6309923","DOIUrl":null,"url":null,"abstract":"Using Nafion212 membrane and TEOS solution as raw materials, Nafion212/SiO<sub>2</sub> composite membranes were prepared. In the in situ sol-gel reaction process, a series of Nafion/SiO<sub>2</sub> composite membranes were prepared by varying the reaction temperature and reaction time. The effects of different modification schemes on Nafion/SiO<sub>2</sub> composite membranes were studied using SEM, EDS, TEM, TGA, XRD, and mechanical tensile experiments, among other methods. The results show that Nafion/SiO<sub>2</sub> composite membranes prepared at 3°C exhibit a well-separated phase structure and excellent water retention properties, with a water uptake of 29.23% and a swelling ratio of 24.25%. These membranes also demonstrate outstanding physical and chemical performance, with a maximum tensile stress of 13.6 MPa and an elongation at a break of 270%. At 110°C, the proton conductivity of the Nafion/SiO<sub>2</sub> composite membrane reaches 0.172 S/cm, meeting the requirements for high-temperature proton exchange membrane fuel cells.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of SiO2 Modification on the Performance of Nafion Composite Membrane\",\"authors\":\"Shuangjie Liu, Jialin Yu, Yongping Hao, Feng Gao, Mo Zhou, Lijun Zhao\",\"doi\":\"10.1155/2024/6309923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Nafion212 membrane and TEOS solution as raw materials, Nafion212/SiO<sub>2</sub> composite membranes were prepared. In the in situ sol-gel reaction process, a series of Nafion/SiO<sub>2</sub> composite membranes were prepared by varying the reaction temperature and reaction time. The effects of different modification schemes on Nafion/SiO<sub>2</sub> composite membranes were studied using SEM, EDS, TEM, TGA, XRD, and mechanical tensile experiments, among other methods. The results show that Nafion/SiO<sub>2</sub> composite membranes prepared at 3°C exhibit a well-separated phase structure and excellent water retention properties, with a water uptake of 29.23% and a swelling ratio of 24.25%. These membranes also demonstrate outstanding physical and chemical performance, with a maximum tensile stress of 13.6 MPa and an elongation at a break of 270%. At 110°C, the proton conductivity of the Nafion/SiO<sub>2</sub> composite membrane reaches 0.172 S/cm, meeting the requirements for high-temperature proton exchange membrane fuel cells.\",\"PeriodicalId\":14283,\"journal\":{\"name\":\"International Journal of Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6309923\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6309923","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Impact of SiO2 Modification on the Performance of Nafion Composite Membrane
Using Nafion212 membrane and TEOS solution as raw materials, Nafion212/SiO2 composite membranes were prepared. In the in situ sol-gel reaction process, a series of Nafion/SiO2 composite membranes were prepared by varying the reaction temperature and reaction time. The effects of different modification schemes on Nafion/SiO2 composite membranes were studied using SEM, EDS, TEM, TGA, XRD, and mechanical tensile experiments, among other methods. The results show that Nafion/SiO2 composite membranes prepared at 3°C exhibit a well-separated phase structure and excellent water retention properties, with a water uptake of 29.23% and a swelling ratio of 24.25%. These membranes also demonstrate outstanding physical and chemical performance, with a maximum tensile stress of 13.6 MPa and an elongation at a break of 270%. At 110°C, the proton conductivity of the Nafion/SiO2 composite membrane reaches 0.172 S/cm, meeting the requirements for high-temperature proton exchange membrane fuel cells.
期刊介绍:
The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.