{"title":"形状复杂性评估新方法:早期设计阶段从机械加工到快速成型制造的阈值","authors":"Mouna Ben Slama, Sami Chatti, Borhen Louhichi","doi":"10.1007/s00163-023-00429-z","DOIUrl":null,"url":null,"abstract":"<p>Increasing product diversity, rising performance and reliability demands, and industry competitiveness are some of the many reasons that increase the need of more complex product designs in almost all sectors. The complexity of parts increases with their geometrical features to be designed and manufactured. Researchers agreed that it can be qualitatively evaluated and expressed with terms like low, medium, high, and very high. However, it might be evaluated differently, depending on the designer’s considerations, domain and experience. Quantitative evaluation of a design complexity is, therefore, indispensable and expedites the decision-making about the selection of the manufacturing process. However, having a well-defined and unambiguous metric for quantitative evaluation is challenging. Most of existing metrics are not objective and are only valid for their specific applications. This paper presents a novel, unambiguous, and generalized approach for shape complexity evaluation. The developed metric enables determining if the selected part should be produced by conventional methods such as machining, or by non-conventional methods such as additive manufacturing. In order to ensure its objectivity, only geometrical features have been considered. The metric was tested through 25 different part designs of varying complexity. The investigations showed an accordance between the qualitatively evaluated shape and the calculated complexity factor. Also, the comparison of the results with other metrics showed the weakness of the latter and the efficiency and reliability of our metric. The results have been also validated by 50 experts from 23 countries. Based on these results, a threshold between machining and additive manufacturing is fixed allowing an easier decision-making.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":49629,"journal":{"name":"Research in Engineering Design","volume":"105 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel method for shape complexity evaluation: a threshold from machining to additive manufacturing in the early design phase\",\"authors\":\"Mouna Ben Slama, Sami Chatti, Borhen Louhichi\",\"doi\":\"10.1007/s00163-023-00429-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing product diversity, rising performance and reliability demands, and industry competitiveness are some of the many reasons that increase the need of more complex product designs in almost all sectors. The complexity of parts increases with their geometrical features to be designed and manufactured. Researchers agreed that it can be qualitatively evaluated and expressed with terms like low, medium, high, and very high. However, it might be evaluated differently, depending on the designer’s considerations, domain and experience. Quantitative evaluation of a design complexity is, therefore, indispensable and expedites the decision-making about the selection of the manufacturing process. However, having a well-defined and unambiguous metric for quantitative evaluation is challenging. Most of existing metrics are not objective and are only valid for their specific applications. This paper presents a novel, unambiguous, and generalized approach for shape complexity evaluation. The developed metric enables determining if the selected part should be produced by conventional methods such as machining, or by non-conventional methods such as additive manufacturing. In order to ensure its objectivity, only geometrical features have been considered. The metric was tested through 25 different part designs of varying complexity. The investigations showed an accordance between the qualitatively evaluated shape and the calculated complexity factor. Also, the comparison of the results with other metrics showed the weakness of the latter and the efficiency and reliability of our metric. The results have been also validated by 50 experts from 23 countries. Based on these results, a threshold between machining and additive manufacturing is fixed allowing an easier decision-making.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":49629,\"journal\":{\"name\":\"Research in Engineering Design\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00163-023-00429-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00163-023-00429-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Novel method for shape complexity evaluation: a threshold from machining to additive manufacturing in the early design phase
Increasing product diversity, rising performance and reliability demands, and industry competitiveness are some of the many reasons that increase the need of more complex product designs in almost all sectors. The complexity of parts increases with their geometrical features to be designed and manufactured. Researchers agreed that it can be qualitatively evaluated and expressed with terms like low, medium, high, and very high. However, it might be evaluated differently, depending on the designer’s considerations, domain and experience. Quantitative evaluation of a design complexity is, therefore, indispensable and expedites the decision-making about the selection of the manufacturing process. However, having a well-defined and unambiguous metric for quantitative evaluation is challenging. Most of existing metrics are not objective and are only valid for their specific applications. This paper presents a novel, unambiguous, and generalized approach for shape complexity evaluation. The developed metric enables determining if the selected part should be produced by conventional methods such as machining, or by non-conventional methods such as additive manufacturing. In order to ensure its objectivity, only geometrical features have been considered. The metric was tested through 25 different part designs of varying complexity. The investigations showed an accordance between the qualitatively evaluated shape and the calculated complexity factor. Also, the comparison of the results with other metrics showed the weakness of the latter and the efficiency and reliability of our metric. The results have been also validated by 50 experts from 23 countries. Based on these results, a threshold between machining and additive manufacturing is fixed allowing an easier decision-making.
期刊介绍:
Research in Engineering Design is an international journal that publishes research papers on design theory and methodology in all fields of engineering, focussing on mechanical, civil, architectural, and manufacturing engineering. The journal is designed for professionals in academia, industry and government interested in research issues relevant to design practice. Papers emphasize underlying principles of engineering design and discipline-oriented research where results are of interest or extendible to other engineering domains. General areas of interest include theories of design, foundations of design environments, representations and languages, models of design processes, and integration of design and manufacturing. Representative topics include functional representation, feature-based design, shape grammars, process design, redesign, product data base models, and empirical studies. The journal also publishes state-of-the-art review articles.