时变域上半线性热方程的连续性和回拉吸引子

IF 1.7 4区 数学 Q1 Mathematics
Mingli Hong, Feng Zhou, Chunyou Sun
{"title":"时变域上半线性热方程的连续性和回拉吸引子","authors":"Mingli Hong, Feng Zhou, Chunyou Sun","doi":"10.1186/s13661-023-01813-3","DOIUrl":null,"url":null,"abstract":"We consider dynamics of a semilinear heat equation on time-varying domains with lower regular forcing term. Instead of requiring the forcing term $f(\\cdot )$ to satisfy $\\int _{-\\infty}^{t}e^{\\lambda s}\\|f(s)\\|^{2}_{L^{2}}\\,ds<\\infty $ for all $t\\in \\mathbb{R}$ , we show that the solutions of a semilinear heat equation on time-varying domains are continuous with respect to initial data in $H^{1}$ topology and the usual $(L^{2},L^{2})$ pullback $\\mathscr{D}_{\\lambda}$ -attractor indeed can attract in the $H^{1}$ -norm, provided that $\\int _{-\\infty}^{t}e^{\\lambda s}\\|f(s)\\|^{2}_{H^{-1}(\\mathcal{O}_{s})}\\,ds< \\infty $ and $f\\in L^{2}_{\\mathrm{loc}}(\\mathbb{R},L^{2}(\\mathcal{O}_{s}))$ .","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"108 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuity and pullback attractors for a semilinear heat equation on time-varying domains\",\"authors\":\"Mingli Hong, Feng Zhou, Chunyou Sun\",\"doi\":\"10.1186/s13661-023-01813-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider dynamics of a semilinear heat equation on time-varying domains with lower regular forcing term. Instead of requiring the forcing term $f(\\\\cdot )$ to satisfy $\\\\int _{-\\\\infty}^{t}e^{\\\\lambda s}\\\\|f(s)\\\\|^{2}_{L^{2}}\\\\,ds<\\\\infty $ for all $t\\\\in \\\\mathbb{R}$ , we show that the solutions of a semilinear heat equation on time-varying domains are continuous with respect to initial data in $H^{1}$ topology and the usual $(L^{2},L^{2})$ pullback $\\\\mathscr{D}_{\\\\lambda}$ -attractor indeed can attract in the $H^{1}$ -norm, provided that $\\\\int _{-\\\\infty}^{t}e^{\\\\lambda s}\\\\|f(s)\\\\|^{2}_{H^{-1}(\\\\mathcal{O}_{s})}\\\\,ds< \\\\infty $ and $f\\\\in L^{2}_{\\\\mathrm{loc}}(\\\\mathbb{R},L^{2}(\\\\mathcal{O}_{s}))$ .\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-023-01813-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-023-01813-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个半线性热方程在时变域上的动力学问题,该方程具有较低的规则强迫项。我们不要求强制项 $f(\cdot )$ 满足 $\int _{-\infty}^{t}e^{\lambda s}\|f(s)\|^{2}_{L^{2}}\,ds本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Continuity and pullback attractors for a semilinear heat equation on time-varying domains
We consider dynamics of a semilinear heat equation on time-varying domains with lower regular forcing term. Instead of requiring the forcing term $f(\cdot )$ to satisfy $\int _{-\infty}^{t}e^{\lambda s}\|f(s)\|^{2}_{L^{2}}\,ds<\infty $ for all $t\in \mathbb{R}$ , we show that the solutions of a semilinear heat equation on time-varying domains are continuous with respect to initial data in $H^{1}$ topology and the usual $(L^{2},L^{2})$ pullback $\mathscr{D}_{\lambda}$ -attractor indeed can attract in the $H^{1}$ -norm, provided that $\int _{-\infty}^{t}e^{\lambda s}\|f(s)\|^{2}_{H^{-1}(\mathcal{O}_{s})}\,ds< \infty $ and $f\in L^{2}_{\mathrm{loc}}(\mathbb{R},L^{2}(\mathcal{O}_{s}))$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信