结合深共晶溶剂和稀酸预处理技术进行甘蔗渣分馏

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Layanny Samara da Silva Souza, Willyan Araújo da Costa, Vanessa Freire de França, José Daladiê Barreto da Costa Filho, Everaldo Silvino dos Santos, Márcio José Coelho Pontes, Liliana Fátima Bezerra Lira Pontes
{"title":"结合深共晶溶剂和稀酸预处理技术进行甘蔗渣分馏","authors":"Layanny Samara da Silva Souza, Willyan Araújo da Costa, Vanessa Freire de França, José Daladiê Barreto da Costa Filho, Everaldo Silvino dos Santos, Márcio José Coelho Pontes, Liliana Fátima Bezerra Lira Pontes","doi":"10.1007/s43153-023-00429-5","DOIUrl":null,"url":null,"abstract":"<p>The worldwide crisis of the fossil fuels and the current environmental issues have led for the search of new alternative for the energy industrial sector. In this scenario, the production of second-generation ethanol, from the exploitation of lignocellulosic biomasses fractions, has presented itself as a prominent alternative. Thus, the present work aimed to develop a combined process for the sugarcane bagasse (SCB) fractionation using a deep eutectic solvent (DES), a new class of ecofriendly solvents, and diluted acid hydrolysis. The DES delignification process was able to reduce the SCB lignin content in about 48% and, at the optimum hydrolysis conditions (1.1% v v<sup>−1</sup> of sulfuric acid and 59 min of hydrolysis time), the delignified material was converted into a solid fraction rich in cellulose (51.11 ± 0.95%, increment of 41.46%) and into a liquor product rich in xylose (18.26 ± 3.14 g L<sup>−1</sup>). The data statistical analysis proved that the combined strategy was superior to the single and direct acid hydrolyzation of SCB. The structural changes of the material after all investigated pretreatments were confirmed by FTIR and DRX techniques, what reinforce the relevance of the results here reported.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combination of deep eutectic solvent and diluted acid pretreatments for sugarcane bagasse fractionation\",\"authors\":\"Layanny Samara da Silva Souza, Willyan Araújo da Costa, Vanessa Freire de França, José Daladiê Barreto da Costa Filho, Everaldo Silvino dos Santos, Márcio José Coelho Pontes, Liliana Fátima Bezerra Lira Pontes\",\"doi\":\"10.1007/s43153-023-00429-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The worldwide crisis of the fossil fuels and the current environmental issues have led for the search of new alternative for the energy industrial sector. In this scenario, the production of second-generation ethanol, from the exploitation of lignocellulosic biomasses fractions, has presented itself as a prominent alternative. Thus, the present work aimed to develop a combined process for the sugarcane bagasse (SCB) fractionation using a deep eutectic solvent (DES), a new class of ecofriendly solvents, and diluted acid hydrolysis. The DES delignification process was able to reduce the SCB lignin content in about 48% and, at the optimum hydrolysis conditions (1.1% v v<sup>−1</sup> of sulfuric acid and 59 min of hydrolysis time), the delignified material was converted into a solid fraction rich in cellulose (51.11 ± 0.95%, increment of 41.46%) and into a liquor product rich in xylose (18.26 ± 3.14 g L<sup>−1</sup>). The data statistical analysis proved that the combined strategy was superior to the single and direct acid hydrolyzation of SCB. The structural changes of the material after all investigated pretreatments were confirmed by FTIR and DRX techniques, what reinforce the relevance of the results here reported.</p>\",\"PeriodicalId\":9194,\"journal\":{\"name\":\"Brazilian Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-023-00429-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-023-00429-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球化石燃料危机和当前的环境问题促使人们为能源工业领域寻找新的替代品。在这种情况下,利用木质纤维素生物质馏分生产第二代乙醇已成为一种重要的替代方法。因此,本研究旨在开发一种使用深共晶溶剂(DES)、新型环保溶剂和稀酸水解的甘蔗渣(SCB)分馏组合工艺。在最佳水解条件下(硫酸浓度为 1.1% v v-1,水解时间为 59 分钟),木质素转化为富含纤维素的固体部分(51.11 ± 0.95%,增量为 41.46%)和富含木糖的液体产品(18.26 ± 3.14 g L-1)。数据统计分析证明,联合策略优于单一和直接酸水解 SCB。傅立叶变换红外光谱(FTIR)和 DRX 技术证实了所有研究的预处理后材料结构的变化,从而加强了所报告结果的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combination of deep eutectic solvent and diluted acid pretreatments for sugarcane bagasse fractionation

Combination of deep eutectic solvent and diluted acid pretreatments for sugarcane bagasse fractionation

The worldwide crisis of the fossil fuels and the current environmental issues have led for the search of new alternative for the energy industrial sector. In this scenario, the production of second-generation ethanol, from the exploitation of lignocellulosic biomasses fractions, has presented itself as a prominent alternative. Thus, the present work aimed to develop a combined process for the sugarcane bagasse (SCB) fractionation using a deep eutectic solvent (DES), a new class of ecofriendly solvents, and diluted acid hydrolysis. The DES delignification process was able to reduce the SCB lignin content in about 48% and, at the optimum hydrolysis conditions (1.1% v v−1 of sulfuric acid and 59 min of hydrolysis time), the delignified material was converted into a solid fraction rich in cellulose (51.11 ± 0.95%, increment of 41.46%) and into a liquor product rich in xylose (18.26 ± 3.14 g L−1). The data statistical analysis proved that the combined strategy was superior to the single and direct acid hydrolyzation of SCB. The structural changes of the material after all investigated pretreatments were confirmed by FTIR and DRX techniques, what reinforce the relevance of the results here reported.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信