评估各种流量控制方法在减少高超音速飞行物鼻翼阻力和空气动力热量方面的作用

IF 1.1 4区 工程技术 Q4 MECHANICS
†. S.Abbasi, S. E. Vali
{"title":"评估各种流量控制方法在减少高超音速飞行物鼻翼阻力和空气动力热量方面的作用","authors":"†. S.Abbasi, S. E. Vali","doi":"10.47176/jafm.17.3.2150","DOIUrl":null,"url":null,"abstract":"Effective deduction of air heating load and drag is a critical issue in hypersonic vehicle engineering applications. In this research, seven various geometrical models have been proposed to study and compare the effect of each configuration on the flow field, drag, and aerodynamic heating deduction under the same flow conditions. The presented configurations in this study: (a) blunt-body geometry as a reference of comparison, (b) blunt-body geometry with a spike, (c) blunt-body geometry with an counter flow jet, (d) blunt-body geometry with a spike and counter flow jet, (e) blunt-body geometry with a spike and aerodisk, (f) blunt-body geometry with a spike, aerodisk, and root counter flow jet, (g) blunt-body geometry with a spike, four aerodisks and root counter flow jet. The Reynolds-Averaged equations have been solved using the Finite Volume Method (FVM) along with the shear stress turbulence model (k-ω SST). The flow is assumed compressible, steady-state, and axisymmetric with a free stream Mach number of 6. According to the study of each configuration’s performance related to the parameters of drag, maximum pressure, and maximum heat flux factors on the blunt-body walls, (g) configuration with a drag factor of 0.2699, maximum pressure factor of 209.8, and maximum heat flux factor of 25.1, has the most deduction on the blunt-body walls among the seven configurations. The deduction percentage of drag, maximum pressure, and maximum heat flux factors of (g) configuration to (a) configuration are %72.1, %94.5, and %79.9, respectively, which significantly diminished drag and heat flux. Also, the best configuration scenarios for drag and aerodynamic heating deduction are geometrical models of g, f, d, e, c, b, and a, respectively.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Various Flow Control Methods in Reducing Drag and Aerodynamic Heating on the Nose of Hypersonic Flying Objects\",\"authors\":\"†. S.Abbasi, S. E. Vali\",\"doi\":\"10.47176/jafm.17.3.2150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective deduction of air heating load and drag is a critical issue in hypersonic vehicle engineering applications. In this research, seven various geometrical models have been proposed to study and compare the effect of each configuration on the flow field, drag, and aerodynamic heating deduction under the same flow conditions. The presented configurations in this study: (a) blunt-body geometry as a reference of comparison, (b) blunt-body geometry with a spike, (c) blunt-body geometry with an counter flow jet, (d) blunt-body geometry with a spike and counter flow jet, (e) blunt-body geometry with a spike and aerodisk, (f) blunt-body geometry with a spike, aerodisk, and root counter flow jet, (g) blunt-body geometry with a spike, four aerodisks and root counter flow jet. The Reynolds-Averaged equations have been solved using the Finite Volume Method (FVM) along with the shear stress turbulence model (k-ω SST). The flow is assumed compressible, steady-state, and axisymmetric with a free stream Mach number of 6. According to the study of each configuration’s performance related to the parameters of drag, maximum pressure, and maximum heat flux factors on the blunt-body walls, (g) configuration with a drag factor of 0.2699, maximum pressure factor of 209.8, and maximum heat flux factor of 25.1, has the most deduction on the blunt-body walls among the seven configurations. The deduction percentage of drag, maximum pressure, and maximum heat flux factors of (g) configuration to (a) configuration are %72.1, %94.5, and %79.9, respectively, which significantly diminished drag and heat flux. Also, the best configuration scenarios for drag and aerodynamic heating deduction are geometrical models of g, f, d, e, c, b, and a, respectively.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.3.2150\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.3.2150","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在高超音速飞行器工程应用中,有效扣除空气加热负荷和阻力是一个关键问题。本研究提出了七种不同的几何模型,以研究和比较在相同的流动条件下,每种构型对流场、阻力和气动加热推导的影响。本研究中提出的构型包括(a) 作为比较参考的钝体几何模型,(b) 带尖头的钝体几何模型,(c) 带逆流射流的钝体几何模型,(d) 带尖头和逆流射流的钝体几何模型,(e) 带尖头和气盘的钝体几何模型,(f) 带尖头、气盘和根逆流射流的钝体几何模型,(g) 带尖头、四个气盘和根逆流射流的钝体几何模型。雷诺平均方程采用有限体积法(FVM)和剪应力湍流模型(k-ω SST)求解。根据与钝体壁阻力系数、最大压力系数和最大热通量系数等参数相关的各构型性能研究,在七种构型中,阻力系数为 0.2699、最大压力系数为 209.8、最大热通量系数为 25.1 的(g)构型对钝体壁的影响最大。(g)配置对(a)配置的阻力、最大压力和最大热通量系数的折减百分比分别为%72.1、%94.5和%79.9,显著降低了阻力和热通量。此外,阻力和气动热推导的最佳配置方案分别是 g、f、d、e、c、b 和 a 的几何模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Various Flow Control Methods in Reducing Drag and Aerodynamic Heating on the Nose of Hypersonic Flying Objects
Effective deduction of air heating load and drag is a critical issue in hypersonic vehicle engineering applications. In this research, seven various geometrical models have been proposed to study and compare the effect of each configuration on the flow field, drag, and aerodynamic heating deduction under the same flow conditions. The presented configurations in this study: (a) blunt-body geometry as a reference of comparison, (b) blunt-body geometry with a spike, (c) blunt-body geometry with an counter flow jet, (d) blunt-body geometry with a spike and counter flow jet, (e) blunt-body geometry with a spike and aerodisk, (f) blunt-body geometry with a spike, aerodisk, and root counter flow jet, (g) blunt-body geometry with a spike, four aerodisks and root counter flow jet. The Reynolds-Averaged equations have been solved using the Finite Volume Method (FVM) along with the shear stress turbulence model (k-ω SST). The flow is assumed compressible, steady-state, and axisymmetric with a free stream Mach number of 6. According to the study of each configuration’s performance related to the parameters of drag, maximum pressure, and maximum heat flux factors on the blunt-body walls, (g) configuration with a drag factor of 0.2699, maximum pressure factor of 209.8, and maximum heat flux factor of 25.1, has the most deduction on the blunt-body walls among the seven configurations. The deduction percentage of drag, maximum pressure, and maximum heat flux factors of (g) configuration to (a) configuration are %72.1, %94.5, and %79.9, respectively, which significantly diminished drag and heat flux. Also, the best configuration scenarios for drag and aerodynamic heating deduction are geometrical models of g, f, d, e, c, b, and a, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信