{"title":"带表面张力的角峰状水波 II:零表面张力极限","authors":"Siddhant Agrawal","doi":"10.1090/memo/1458","DOIUrl":null,"url":null,"abstract":"This is the second paper in a series of papers analyzing angled crested like water waves with surface tension. We consider the 2D capillary gravity water wave equation and assume that the fluid is inviscid, incompressible, irrotational and the air density is zero. In the first paper \\cite{Ag19} we constructed a weighted energy which generalizes the energy of Kinsey and Wu \\cite{KiWu18} to the case of non-zero surface tension, and proved a local wellposedness result. In this paper we prove that under a suitable scaling regime, the zero surface tension limit of these solutions with surface tension are solutions to the gravity water wave equation which includes waves with angled crests.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"149 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Angled Crested Like Water Waves with Surface Tension II: Zero Surface Tension Limit\",\"authors\":\"Siddhant Agrawal\",\"doi\":\"10.1090/memo/1458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the second paper in a series of papers analyzing angled crested like water waves with surface tension. We consider the 2D capillary gravity water wave equation and assume that the fluid is inviscid, incompressible, irrotational and the air density is zero. In the first paper \\\\cite{Ag19} we constructed a weighted energy which generalizes the energy of Kinsey and Wu \\\\cite{KiWu18} to the case of non-zero surface tension, and proved a local wellposedness result. In this paper we prove that under a suitable scaling regime, the zero surface tension limit of these solutions with surface tension are solutions to the gravity water wave equation which includes waves with angled crests.\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\"149 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1458\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1458","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Angled Crested Like Water Waves with Surface Tension II: Zero Surface Tension Limit
This is the second paper in a series of papers analyzing angled crested like water waves with surface tension. We consider the 2D capillary gravity water wave equation and assume that the fluid is inviscid, incompressible, irrotational and the air density is zero. In the first paper \cite{Ag19} we constructed a weighted energy which generalizes the energy of Kinsey and Wu \cite{KiWu18} to the case of non-zero surface tension, and proved a local wellposedness result. In this paper we prove that under a suitable scaling regime, the zero surface tension limit of these solutions with surface tension are solutions to the gravity water wave equation which includes waves with angled crests.
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.