Mel2Word:用于符号音乐分析的基于文本的旋律表示法

Saebyul Park, Eunjin Choi, Jeounghoon Kim, Juhan Nam
{"title":"Mel2Word:用于符号音乐分析的基于文本的旋律表示法","authors":"Saebyul Park, Eunjin Choi, Jeounghoon Kim, Juhan Nam","doi":"10.1177/20592043231216254","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to present a natural language processing-based approach to symbolic music analysis. We propose Mel2Word, a text-based representation including pitch and rhythm information, and a new natural language processing-based melody segmentation algorithm. We first show how to create a melody dictionary using Byte Pair Encoding (BPE), which finds and merges the most frequent pairs that appear in a collection of melodies in a data-driven manner. The dictionary is then used to tokenize or segment a given melody. Utilizing various symbolic melody datasets, we conduct an exploratory analysis and evaluate the classification performance of melody representation models on the MTC-ANN dataset. A comparison with existing segmentation algorithms is also carried out. The result shows that the proposed model significantly improves classification performance in comparison to various melodic features and several existing segmentation algorithms.","PeriodicalId":436334,"journal":{"name":"Music & Science","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mel2Word: A Text-Based Melody Representation for Symbolic Music Analysis\",\"authors\":\"Saebyul Park, Eunjin Choi, Jeounghoon Kim, Juhan Nam\",\"doi\":\"10.1177/20592043231216254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research is to present a natural language processing-based approach to symbolic music analysis. We propose Mel2Word, a text-based representation including pitch and rhythm information, and a new natural language processing-based melody segmentation algorithm. We first show how to create a melody dictionary using Byte Pair Encoding (BPE), which finds and merges the most frequent pairs that appear in a collection of melodies in a data-driven manner. The dictionary is then used to tokenize or segment a given melody. Utilizing various symbolic melody datasets, we conduct an exploratory analysis and evaluate the classification performance of melody representation models on the MTC-ANN dataset. A comparison with existing segmentation algorithms is also carried out. The result shows that the proposed model significantly improves classification performance in comparison to various melodic features and several existing segmentation algorithms.\",\"PeriodicalId\":436334,\"journal\":{\"name\":\"Music & Science\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Music & Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/20592043231216254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music & Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20592043231216254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提出一种基于自然语言处理的符号音乐分析方法。我们提出了包含音高和节奏信息的文本表示法 Mel2Word,以及一种基于自然语言处理的新旋律分割算法。我们首先展示了如何使用字节对编码(BPE)创建旋律字典,该字典以数据驱动的方式查找并合并旋律集合中出现频率最高的字节对。然后利用该字典对给定的旋律进行标记化或分割。利用各种符号旋律数据集,我们进行了探索性分析,并评估了旋律表示模型在 MTC-ANN 数据集上的分类性能。同时还与现有的分割算法进行了比较。结果表明,与各种旋律特征和现有的几种分割算法相比,所提出的模型显著提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mel2Word: A Text-Based Melody Representation for Symbolic Music Analysis
The purpose of this research is to present a natural language processing-based approach to symbolic music analysis. We propose Mel2Word, a text-based representation including pitch and rhythm information, and a new natural language processing-based melody segmentation algorithm. We first show how to create a melody dictionary using Byte Pair Encoding (BPE), which finds and merges the most frequent pairs that appear in a collection of melodies in a data-driven manner. The dictionary is then used to tokenize or segment a given melody. Utilizing various symbolic melody datasets, we conduct an exploratory analysis and evaluate the classification performance of melody representation models on the MTC-ANN dataset. A comparison with existing segmentation algorithms is also carried out. The result shows that the proposed model significantly improves classification performance in comparison to various melodic features and several existing segmentation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信