在 X 射线 CT 数据中采用对抗性无监督域适应的神经网络方法进行基于形状的正方体黄铁矿识别

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Suraj Neelakantan , Jesper Norell , Alexander Hansson , Martin Längkvist , Amy Loutfi
{"title":"在 X 射线 CT 数据中采用对抗性无监督域适应的神经网络方法进行基于形状的正方体黄铁矿识别","authors":"Suraj Neelakantan ,&nbsp;Jesper Norell ,&nbsp;Alexander Hansson ,&nbsp;Martin Längkvist ,&nbsp;Amy Loutfi","doi":"10.1016/j.acags.2023.100153","DOIUrl":null,"url":null,"abstract":"<div><p>We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"21 ","pages":"Article 100153"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197423000423/pdfft?md5=b48cfaa3e867a2a2e72a1453cf13f16e&pid=1-s2.0-S2590197423000423-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation\",\"authors\":\"Suraj Neelakantan ,&nbsp;Jesper Norell ,&nbsp;Alexander Hansson ,&nbsp;Martin Längkvist ,&nbsp;Amy Loutfi\",\"doi\":\"10.1016/j.acags.2023.100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"21 \",\"pages\":\"Article 100153\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590197423000423/pdfft?md5=b48cfaa3e867a2a2e72a1453cf13f16e&pid=1-s2.0-S2590197423000423-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197423000423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197423000423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用深度神经网络探索了一种基于衰减和形状的高分辨率 X 射线计算机断层扫描(XCT)数据中八面体黄铁矿的识别方法。为了解决注释数据稀缺的问题,我们生成了一个合成图像补充训练集。为了研究和解决合成数据与 XCT 数据之间的领域差距,我们训练了几个深度学习模型,并对其进行了领域自适应和非领域自适应的比较。我们发现,在一小部分人类注释集上训练的模型虽然表现出过拟合,但可以与人类注释者相媲美。无监督领域适应方法成功地弥合了领域差距,显著提高了性能。在融合了合成数据和真实数据的数据集上训练的领域适应模型是整体表现最佳的模型。这凸显了将合成数据集用于矿物学深度学习的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation

We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信