Min Wei , Qianying Zhao , Bo Lei , Yizhuo Cai , Yushun Zhang , Xing Zhang , Wenbo Wang
{"title":"FedACT:用于计算能力网络联合学习的自适应链式训练方法","authors":"Min Wei , Qianying Zhao , Bo Lei , Yizhuo Cai , Yushun Zhang , Xing Zhang , Wenbo Wang","doi":"10.1016/j.dcan.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) is a novel distributed machine learning methodology that addresses large-scale parallel computing challenges while safeguarding data security. However, the traditional FL model in communication scenarios, whether for uplink or downlink communications, may give rise to several network problems, such as bandwidth occupation, additional network latency, and bandwidth fragmentation. In this paper, we propose an adaptive chained training approach (FedACT) for FL in computing power networks. First, a Computation-driven Clustering Strategy (CCS) is designed. The server clusters clients by task processing delays to minimize waiting delays at the central server. Second, we propose a Genetic-Algorithm-based Sorting (GAS) method to optimize the order of clients participating in training. Finally, based on the table lookup and forwarding rules of the Segment Routing over IPv6 (SRv6) protocol, the sorting results of GAS are written into the SRv6 packet header, to control the order in which clients participate in model training. We conduct extensive experiments on two datasets of CIFAR-10 and MNIST, and the results demonstrate that the proposed algorithm offers improved accuracy, diminished communication costs, and reduced network delays.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1576-1589"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedACT: An adaptive chained training approach for federated learning in computing power networks\",\"authors\":\"Min Wei , Qianying Zhao , Bo Lei , Yizhuo Cai , Yushun Zhang , Xing Zhang , Wenbo Wang\",\"doi\":\"10.1016/j.dcan.2023.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Federated Learning (FL) is a novel distributed machine learning methodology that addresses large-scale parallel computing challenges while safeguarding data security. However, the traditional FL model in communication scenarios, whether for uplink or downlink communications, may give rise to several network problems, such as bandwidth occupation, additional network latency, and bandwidth fragmentation. In this paper, we propose an adaptive chained training approach (FedACT) for FL in computing power networks. First, a Computation-driven Clustering Strategy (CCS) is designed. The server clusters clients by task processing delays to minimize waiting delays at the central server. Second, we propose a Genetic-Algorithm-based Sorting (GAS) method to optimize the order of clients participating in training. Finally, based on the table lookup and forwarding rules of the Segment Routing over IPv6 (SRv6) protocol, the sorting results of GAS are written into the SRv6 packet header, to control the order in which clients participate in model training. We conduct extensive experiments on two datasets of CIFAR-10 and MNIST, and the results demonstrate that the proposed algorithm offers improved accuracy, diminished communication costs, and reduced network delays.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"10 6\",\"pages\":\"Pages 1576-1589\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864823001839\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001839","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
FedACT: An adaptive chained training approach for federated learning in computing power networks
Federated Learning (FL) is a novel distributed machine learning methodology that addresses large-scale parallel computing challenges while safeguarding data security. However, the traditional FL model in communication scenarios, whether for uplink or downlink communications, may give rise to several network problems, such as bandwidth occupation, additional network latency, and bandwidth fragmentation. In this paper, we propose an adaptive chained training approach (FedACT) for FL in computing power networks. First, a Computation-driven Clustering Strategy (CCS) is designed. The server clusters clients by task processing delays to minimize waiting delays at the central server. Second, we propose a Genetic-Algorithm-based Sorting (GAS) method to optimize the order of clients participating in training. Finally, based on the table lookup and forwarding rules of the Segment Routing over IPv6 (SRv6) protocol, the sorting results of GAS are written into the SRv6 packet header, to control the order in which clients participate in model training. We conduct extensive experiments on two datasets of CIFAR-10 and MNIST, and the results demonstrate that the proposed algorithm offers improved accuracy, diminished communication costs, and reduced network delays.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.