地震数据和元数据知识图谱

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
William Davis , Cassandra R. Hunt
{"title":"地震数据和元数据知识图谱","authors":"William Davis ,&nbsp;Cassandra R. Hunt","doi":"10.1016/j.acags.2023.100151","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing scale and diversity of seismic data, and the growing role of big data in seismology, has raised interest in methods to make data exploration more accessible. This paper presents the use of knowledge graphs (KGs) for representing seismic data and metadata to improve data exploration and analysis, focusing on usability, flexibility, and extensibility. Using constraints derived from domain knowledge in seismology, we define a semantic model of seismic station and event information used to construct the KGs. Our approach utilizes the capability of KGs to integrate data across many sources and diverse schema formats. We use schema-diverse, real-world seismic data to construct KGs with millions of nodes, and illustrate potential applications with three big-data examples. Our findings demonstrate the potential of KGs to enhance the efficiency and efficacy of seismological workflows in research and beyond, indicating a promising interdisciplinary future for this technology.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"21 ","pages":"Article 100151"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259019742300040X/pdfft?md5=8efe415c8294c5af013a3cb4ee2f664c&pid=1-s2.0-S259019742300040X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Knowledge graphs for seismic data and metadata\",\"authors\":\"William Davis ,&nbsp;Cassandra R. Hunt\",\"doi\":\"10.1016/j.acags.2023.100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing scale and diversity of seismic data, and the growing role of big data in seismology, has raised interest in methods to make data exploration more accessible. This paper presents the use of knowledge graphs (KGs) for representing seismic data and metadata to improve data exploration and analysis, focusing on usability, flexibility, and extensibility. Using constraints derived from domain knowledge in seismology, we define a semantic model of seismic station and event information used to construct the KGs. Our approach utilizes the capability of KGs to integrate data across many sources and diverse schema formats. We use schema-diverse, real-world seismic data to construct KGs with millions of nodes, and illustrate potential applications with three big-data examples. Our findings demonstrate the potential of KGs to enhance the efficiency and efficacy of seismological workflows in research and beyond, indicating a promising interdisciplinary future for this technology.</p></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"21 \",\"pages\":\"Article 100151\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259019742300040X/pdfft?md5=8efe415c8294c5af013a3cb4ee2f664c&pid=1-s2.0-S259019742300040X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259019742300040X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259019742300040X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

地震数据的规模和多样性不断扩大,大数据在地震学中的作用日益增强,这引起了人们对如何使数据探索更易于使用的方法的兴趣。本文介绍了如何使用知识图谱(KG)来表示地震数据和元数据,以改进数据探索和分析,重点关注可用性、灵活性和可扩展性。利用从地震学领域知识中提取的约束条件,我们定义了用于构建知识图谱的地震台站和事件信息语义模型。我们的方法利用 KGs 的能力来整合多种来源和不同模式格式的数据。我们使用模式多样化的真实世界地震数据构建了拥有数百万节点的 KG,并通过三个大数据示例说明了其潜在应用。我们的研究结果表明,KGs 有潜力在研究及其他领域提高地震学工作流程的效率和效力,这也预示着这项技术在跨学科领域大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge graphs for seismic data and metadata

The increasing scale and diversity of seismic data, and the growing role of big data in seismology, has raised interest in methods to make data exploration more accessible. This paper presents the use of knowledge graphs (KGs) for representing seismic data and metadata to improve data exploration and analysis, focusing on usability, flexibility, and extensibility. Using constraints derived from domain knowledge in seismology, we define a semantic model of seismic station and event information used to construct the KGs. Our approach utilizes the capability of KGs to integrate data across many sources and diverse schema formats. We use schema-diverse, real-world seismic data to construct KGs with millions of nodes, and illustrate potential applications with three big-data examples. Our findings demonstrate the potential of KGs to enhance the efficiency and efficacy of seismological workflows in research and beyond, indicating a promising interdisciplinary future for this technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信