具有多项式速率的对称生死过程的融合近似法

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY
A. Logachov, O. Logachova, E. Pechersky, E. Presman, A. Yambartsev
{"title":"具有多项式速率的对称生死过程的融合近似法","authors":"A. Logachov, O. Logachova, E. Pechersky, E. Presman, A. Yambartsev","doi":"10.61102/1024-2953-mprf.2023.29.4.007","DOIUrl":null,"url":null,"abstract":"The symmetric birth and death stochastic process on the non-negative integers x ∈ Z + with polynomial rates x α , α ∈ [1, 2], x 6= 0, is studied. The process moves slowly and spends more time in the neighborhood of the state 0. We prove the convergence of the scaled process to a solution of stochastic differential equation without drift. Sticking phenomenon appears at the limiting process: trajectories, starting from any state, take finite time to reach 0 and remain there indefinitely.","PeriodicalId":48890,"journal":{"name":"Markov Processes and Related Fields","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Approximation for Symmetric Birth-and-Death Processes with Polynomial Rates\",\"authors\":\"A. Logachov, O. Logachova, E. Pechersky, E. Presman, A. Yambartsev\",\"doi\":\"10.61102/1024-2953-mprf.2023.29.4.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The symmetric birth and death stochastic process on the non-negative integers x ∈ Z + with polynomial rates x α , α ∈ [1, 2], x 6= 0, is studied. The process moves slowly and spends more time in the neighborhood of the state 0. We prove the convergence of the scaled process to a solution of stochastic differential equation without drift. Sticking phenomenon appears at the limiting process: trajectories, starting from any state, take finite time to reach 0 and remain there indefinitely.\",\"PeriodicalId\":48890,\"journal\":{\"name\":\"Markov Processes and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Markov Processes and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Markov Processes and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61102/1024-2953-mprf.2023.29.4.007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在非负整数 x∈Z + 上以多项式速率 x α , α∈ [1, 2], x 6= 0 的对称出生和死亡随机过程。该过程移动缓慢,在状态 0 附近停留的时间较长。我们证明了缩放过程对无漂移随机二阶方程解的收敛性。在极限过程中会出现粘滞现象:从任何状态出发的轨迹都需要花费有限的时间到达 0,并无限地停留在那里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion Approximation for Symmetric Birth-and-Death Processes with Polynomial Rates
The symmetric birth and death stochastic process on the non-negative integers x ∈ Z + with polynomial rates x α , α ∈ [1, 2], x 6= 0, is studied. The process moves slowly and spends more time in the neighborhood of the state 0. We prove the convergence of the scaled process to a solution of stochastic differential equation without drift. Sticking phenomenon appears at the limiting process: trajectories, starting from any state, take finite time to reach 0 and remain there indefinitely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Markov Processes and Related Fields
Markov Processes and Related Fields STATISTICS & PROBABILITY-
CiteScore
0.70
自引率
0.00%
发文量
0
期刊介绍: Markov Processes And Related Fields The Journal focuses on mathematical modelling of today''s enormous wealth of problems from modern technology, like artificial intelligence, large scale networks, data bases, parallel simulation, computer architectures, etc. Research papers, reviews, tutorial papers and additionally short explanations of new applied fields and new mathematical problems in the above fields are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信