{"title":"在有限温度下剖析半导体的电子和声带结构:方法与应用","authors":"Xie Zhang, Jun Kang, Su-Huai Wei","doi":"10.1088/0256-307x/41/2/026301","DOIUrl":null,"url":null,"abstract":"\n Semiconductor devices are often operated at elevated temperatures that are well above zero Kelvin, which is the temperature in most first-principles density functional calculations. Computational approaches to computing and understanding the properties of semiconductors at finite temperatures are thus in critical demand. In this review, we discuss the recent progress in computationally assessing the electronic and phononic band structures of semiconductors at finite temperatures. As an emerging semiconductor with particularly strong temperature-induced renormalization of the electronic and phononic band structures, halide perovskites are used as a representative example to demonstrate how computational advances may help to understand the band structures at elevated temperatures. Finally, we briefly illustrate the remaining computational challenges and outlook promising research directions that may help to guide future research in this field.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"14 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications\",\"authors\":\"Xie Zhang, Jun Kang, Su-Huai Wei\",\"doi\":\"10.1088/0256-307x/41/2/026301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Semiconductor devices are often operated at elevated temperatures that are well above zero Kelvin, which is the temperature in most first-principles density functional calculations. Computational approaches to computing and understanding the properties of semiconductors at finite temperatures are thus in critical demand. In this review, we discuss the recent progress in computationally assessing the electronic and phononic band structures of semiconductors at finite temperatures. As an emerging semiconductor with particularly strong temperature-induced renormalization of the electronic and phononic band structures, halide perovskites are used as a representative example to demonstrate how computational advances may help to understand the band structures at elevated temperatures. Finally, we briefly illustrate the remaining computational challenges and outlook promising research directions that may help to guide future research in this field.\",\"PeriodicalId\":10344,\"journal\":{\"name\":\"Chinese Physics Letters\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/0256-307x/41/2/026301\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/2/026301","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications
Semiconductor devices are often operated at elevated temperatures that are well above zero Kelvin, which is the temperature in most first-principles density functional calculations. Computational approaches to computing and understanding the properties of semiconductors at finite temperatures are thus in critical demand. In this review, we discuss the recent progress in computationally assessing the electronic and phononic band structures of semiconductors at finite temperatures. As an emerging semiconductor with particularly strong temperature-induced renormalization of the electronic and phononic band structures, halide perovskites are used as a representative example to demonstrate how computational advances may help to understand the band structures at elevated temperatures. Finally, we briefly illustrate the remaining computational challenges and outlook promising research directions that may help to guide future research in this field.
期刊介绍:
Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.