句子级语义划分的评估基线

IF 4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kuangsheng Cai, Zugang Chen, Hengliang Guo, Shaohua Wang, Guoqing Li, Jing Li, Feng Chen, Hang Feng
{"title":"句子级语义划分的评估基线","authors":"Kuangsheng Cai, Zugang Chen, Hengliang Guo, Shaohua Wang, Guoqing Li, Jing Li, Feng Chen, Hang Feng","doi":"10.3390/make6010003","DOIUrl":null,"url":null,"abstract":"Semantic folding theory (SFT) is an emerging cognitive science theory that aims to explain how the human brain processes and organizes semantic information. The distribution of text into semantic grids is key to SFT. We propose a sentence-level semantic division baseline with 100 grids (SSDB-100), the only dataset we are currently aware of that performs a relevant validation of the sentence-level SFT algorithm, to evaluate the validity of text distribution in semantic grids and divide it using classical division algorithms on SSDB-100. In this article, we describe the construction of SSDB-100. First, a semantic division questionnaire with broad coverage was generated by limiting the uncertainty range of the topics and corpus. Subsequently, through an expert survey, 11 human experts provided feedback. Finally, we analyzed and processed the feedback; the average consistency index for the used feedback was 0.856 after eliminating the invalid feedback. SSDB-100 has 100 semantic grids with clear distinctions between the grids, allowing the dataset to be extended using semantic methods.","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"17 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluative Baseline for Sentence-Level Semantic Division\",\"authors\":\"Kuangsheng Cai, Zugang Chen, Hengliang Guo, Shaohua Wang, Guoqing Li, Jing Li, Feng Chen, Hang Feng\",\"doi\":\"10.3390/make6010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic folding theory (SFT) is an emerging cognitive science theory that aims to explain how the human brain processes and organizes semantic information. The distribution of text into semantic grids is key to SFT. We propose a sentence-level semantic division baseline with 100 grids (SSDB-100), the only dataset we are currently aware of that performs a relevant validation of the sentence-level SFT algorithm, to evaluate the validity of text distribution in semantic grids and divide it using classical division algorithms on SSDB-100. In this article, we describe the construction of SSDB-100. First, a semantic division questionnaire with broad coverage was generated by limiting the uncertainty range of the topics and corpus. Subsequently, through an expert survey, 11 human experts provided feedback. Finally, we analyzed and processed the feedback; the average consistency index for the used feedback was 0.856 after eliminating the invalid feedback. SSDB-100 has 100 semantic grids with clear distinctions between the grids, allowing the dataset to be extended using semantic methods.\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make6010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make6010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

语义折叠理论(SFT)是一种新兴的认知科学理论,旨在解释人脑如何处理和组织语义信息。将文本划分为语义网格是语义折叠理论的关键。我们提出了一个包含 100 个网格的句子级语义划分基线(SSDB-100),这是我们目前所知的唯一一个对句子级 SFT 算法进行相关验证的数据集,用于评估文本在语义网格中分布的有效性,并在 SSDB-100 上使用经典划分算法进行划分。本文将介绍 SSDB-100 的构建。首先,通过限制主题和语料的不确定性范围,生成了一份覆盖面广的语义划分问卷。随后,通过专家调查,11 位人类专家提供了反馈意见。最后,我们对反馈意见进行了分析和处理;在剔除无效反馈意见后,所用反馈意见的平均一致性指数为 0.856。SSDB-100 有 100 个语义网格,网格之间有明确的区别,因此可以使用语义方法对数据集进行扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Evaluative Baseline for Sentence-Level Semantic Division
Semantic folding theory (SFT) is an emerging cognitive science theory that aims to explain how the human brain processes and organizes semantic information. The distribution of text into semantic grids is key to SFT. We propose a sentence-level semantic division baseline with 100 grids (SSDB-100), the only dataset we are currently aware of that performs a relevant validation of the sentence-level SFT algorithm, to evaluate the validity of text distribution in semantic grids and divide it using classical division algorithms on SSDB-100. In this article, we describe the construction of SSDB-100. First, a semantic division questionnaire with broad coverage was generated by limiting the uncertainty range of the topics and corpus. Subsequently, through an expert survey, 11 human experts provided feedback. Finally, we analyzed and processed the feedback; the average consistency index for the used feedback was 0.856 after eliminating the invalid feedback. SSDB-100 has 100 semantic grids with clear distinctions between the grids, allowing the dataset to be extended using semantic methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信