{"title":"通过智能设备、物联网边缘和云计算实现动态分布式智能,利用可穿戴传感器识别人类活动","authors":"Ayman Wazwaz, Khalid Amin, Noura Semary, Tamer Ghanem","doi":"10.3390/jsan13010005","DOIUrl":null,"url":null,"abstract":"A wide range of applications, including sports and healthcare, use human activity recognition (HAR). The Internet of Things (IoT), using cloud systems, offers enormous resources but produces high delays and huge amounts of traffic. This study proposes a distributed intelligence and dynamic HAR architecture using smart IoT devices, edge devices, and cloud computing. These systems were used to train models, store results, and process real-time predictions. Wearable sensors and smartphones were deployed on the human body to detect activities from three positions; accelerometer and gyroscope parameters were utilized to recognize activities. A dynamic selection of models was used, depending on the availability of the data and the mobility of the users. The results showed that this system could handle different scenarios dynamically according to the available features; its prediction accuracy was 99.23% using the LightGBM algorithm during the training stage, when 18 features were used. The prediction time was around 6.4 milliseconds per prediction on the smart end device and 1.6 milliseconds on the Raspberry Pi edge, which can serve more than 30 end devices simultaneously and reduce the need for the cloud. The cloud was used for storing users’ profiles and can be used for real-time prediction in 391 milliseconds per request.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic and Distributed Intelligence over Smart Devices, Internet of Things Edges, and Cloud Computing for Human Activity Recognition Using Wearable Sensors\",\"authors\":\"Ayman Wazwaz, Khalid Amin, Noura Semary, Tamer Ghanem\",\"doi\":\"10.3390/jsan13010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide range of applications, including sports and healthcare, use human activity recognition (HAR). The Internet of Things (IoT), using cloud systems, offers enormous resources but produces high delays and huge amounts of traffic. This study proposes a distributed intelligence and dynamic HAR architecture using smart IoT devices, edge devices, and cloud computing. These systems were used to train models, store results, and process real-time predictions. Wearable sensors and smartphones were deployed on the human body to detect activities from three positions; accelerometer and gyroscope parameters were utilized to recognize activities. A dynamic selection of models was used, depending on the availability of the data and the mobility of the users. The results showed that this system could handle different scenarios dynamically according to the available features; its prediction accuracy was 99.23% using the LightGBM algorithm during the training stage, when 18 features were used. The prediction time was around 6.4 milliseconds per prediction on the smart end device and 1.6 milliseconds on the Raspberry Pi edge, which can serve more than 30 end devices simultaneously and reduce the need for the cloud. The cloud was used for storing users’ profiles and can be used for real-time prediction in 391 milliseconds per request.\",\"PeriodicalId\":37584,\"journal\":{\"name\":\"Journal of Sensor and Actuator Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sensor and Actuator Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jsan13010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan13010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
包括体育和医疗在内的各种应用都在使用人类活动识别(HAR)。使用云系统的物联网(IoT)提供了巨大的资源,但也产生了高延迟和巨大的流量。本研究利用智能物联网设备、边缘设备和云计算提出了分布式智能和动态 HAR 架构。这些系统用于训练模型、存储结果和处理实时预测。在人体上部署了可穿戴传感器和智能手机,从三个位置检测活动;利用加速计和陀螺仪参数识别活动。根据数据的可用性和用户的移动性,对模型进行了动态选择。结果表明,该系统可以根据可用特征动态处理不同的场景;在训练阶段,使用 LightGBM 算法,当使用 18 个特征时,其预测准确率为 99.23%。智能终端设备的每次预测时间约为 6.4 毫秒,Raspberry Pi 边缘设备的每次预测时间约为 1.6 毫秒,可同时为 30 多台终端设备提供服务,减少了对云的需求。云用于存储用户配置文件,每次请求的实时预测时间为 391 毫秒。
Dynamic and Distributed Intelligence over Smart Devices, Internet of Things Edges, and Cloud Computing for Human Activity Recognition Using Wearable Sensors
A wide range of applications, including sports and healthcare, use human activity recognition (HAR). The Internet of Things (IoT), using cloud systems, offers enormous resources but produces high delays and huge amounts of traffic. This study proposes a distributed intelligence and dynamic HAR architecture using smart IoT devices, edge devices, and cloud computing. These systems were used to train models, store results, and process real-time predictions. Wearable sensors and smartphones were deployed on the human body to detect activities from three positions; accelerometer and gyroscope parameters were utilized to recognize activities. A dynamic selection of models was used, depending on the availability of the data and the mobility of the users. The results showed that this system could handle different scenarios dynamically according to the available features; its prediction accuracy was 99.23% using the LightGBM algorithm during the training stage, when 18 features were used. The prediction time was around 6.4 milliseconds per prediction on the smart end device and 1.6 milliseconds on the Raspberry Pi edge, which can serve more than 30 end devices simultaneously and reduce the need for the cloud. The cloud was used for storing users’ profiles and can be used for real-time prediction in 391 milliseconds per request.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.