使用随机森林方法进行鲁棒轨迹预测 在 UAS-S4 Ehécatl 中的应用

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Seyed Mohammad Hashemi, R. Botez, Georges Ghazi
{"title":"使用随机森林方法进行鲁棒轨迹预测 在 UAS-S4 Ehécatl 中的应用","authors":"Seyed Mohammad Hashemi, R. Botez, Georges Ghazi","doi":"10.3390/aerospace11010049","DOIUrl":null,"url":null,"abstract":"Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodology for predicting aircraft trajectories. The study compares the RF approach with two established data-driven models, specifically Long Short-Term Memory (LSTM) and Logistic Regression (LR). The investigation utilizes a significant dataset comprising aircraft trajectory time history data, obtained from a UAS-S4 simulator. Experimental results indicate that within a short-term prediction horizon, the RF methodology surpasses both LSTM and LR in trajectory prediction accuracy and also its robustness to overfitting. The research further fine-tunes the performance of the RF methodology by optimizing various hyperparameters, including the number of estimators, features, depth, split, and leaf. Consequently, these results underscore the viability of the RF methodology as a proven alternative to LSTM and LR models for short-term aircraft trajectory prediction.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":"32 13","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Trajectory Prediction Using Random Forest Methodology Application to UAS-S4 Ehécatl\",\"authors\":\"Seyed Mohammad Hashemi, R. Botez, Georges Ghazi\",\"doi\":\"10.3390/aerospace11010049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodology for predicting aircraft trajectories. The study compares the RF approach with two established data-driven models, specifically Long Short-Term Memory (LSTM) and Logistic Regression (LR). The investigation utilizes a significant dataset comprising aircraft trajectory time history data, obtained from a UAS-S4 simulator. Experimental results indicate that within a short-term prediction horizon, the RF methodology surpasses both LSTM and LR in trajectory prediction accuracy and also its robustness to overfitting. The research further fine-tunes the performance of the RF methodology by optimizing various hyperparameters, including the number of estimators, features, depth, split, and leaf. Consequently, these results underscore the viability of the RF methodology as a proven alternative to LSTM and LR models for short-term aircraft trajectory prediction.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"32 13\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11010049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11010049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

准确的飞机轨迹预测是加强空中交通管制系统、确保安全高效的航空运输环境的基础。本研究详细介绍了随机森林(RF)方法在预测飞机轨迹方面的功效。该研究将 RF 方法与两种成熟的数据驱动模型(特别是长短期记忆(LSTM)和逻辑回归(LR))进行了比较。研究利用了一个重要的数据集,其中包括从 UAS-S4 模拟器上获取的飞机轨迹时间历史数据。实验结果表明,在短期预测范围内,RF 方法在轨迹预测准确性方面超过了 LSTM 和 LR,而且对过拟合也很稳健。研究通过优化各种超参数(包括估计器数量、特征、深度、分割和叶片),进一步微调了射频方法的性能。因此,这些结果强调了射频方法作为 LSTM 和 LR 模型短期飞机轨迹预测的成熟替代方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Trajectory Prediction Using Random Forest Methodology Application to UAS-S4 Ehécatl
Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control systems, ensuring a safe and efficient aviation transportation environment. This research presents a detailed study on the efficacy of the Random Forest (RF) methodology for predicting aircraft trajectories. The study compares the RF approach with two established data-driven models, specifically Long Short-Term Memory (LSTM) and Logistic Regression (LR). The investigation utilizes a significant dataset comprising aircraft trajectory time history data, obtained from a UAS-S4 simulator. Experimental results indicate that within a short-term prediction horizon, the RF methodology surpasses both LSTM and LR in trajectory prediction accuracy and also its robustness to overfitting. The research further fine-tunes the performance of the RF methodology by optimizing various hyperparameters, including the number of estimators, features, depth, split, and leaf. Consequently, these results underscore the viability of the RF methodology as a proven alternative to LSTM and LR models for short-term aircraft trajectory prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信