{"title":"退化无限维可逆系统的 KAM 定理","authors":"Zhaowei Lou, Youchao Wu","doi":"10.58997/ejde.2024.02","DOIUrl":null,"url":null,"abstract":"In this article, we establish a Kolmogorov-Arnold-Moser (KAM) theorem for degenerate infinite-dimensional reversible systems under a non-degenerate condition of Russmann type. This theorem broadens the scope of applicability of degenerate KAM theory, previously confined to Hamiltonian systems, by incorporating infinite-dimensional reversible systems. Using this theorem, we obtain the existence and linear stability of quasi-periodic solutions for a class of non-Hamiltonian but reversible beam equations with non-linearities in derivatives.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":"15 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KAM theorem for degenerate infinite-dimensional reversible systems\",\"authors\":\"Zhaowei Lou, Youchao Wu\",\"doi\":\"10.58997/ejde.2024.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we establish a Kolmogorov-Arnold-Moser (KAM) theorem for degenerate infinite-dimensional reversible systems under a non-degenerate condition of Russmann type. This theorem broadens the scope of applicability of degenerate KAM theory, previously confined to Hamiltonian systems, by incorporating infinite-dimensional reversible systems. Using this theorem, we obtain the existence and linear stability of quasi-periodic solutions for a class of non-Hamiltonian but reversible beam equations with non-linearities in derivatives.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.02\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们在鲁斯曼类型的非退化条件下,建立了退化无限维可逆系统的科尔莫戈罗夫-阿诺德-莫泽尔(KAM)定理。该定理拓宽了退化 KAM 理论的适用范围,将无限维可逆系统纳入其中,而该理论以前仅限于哈密尔顿系统。利用该定理,我们得到了一类非哈密尔顿但可逆的、导数非线性的梁方程的准周期解的存在性和线性稳定性。更多信息,请参见 https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html。
KAM theorem for degenerate infinite-dimensional reversible systems
In this article, we establish a Kolmogorov-Arnold-Moser (KAM) theorem for degenerate infinite-dimensional reversible systems under a non-degenerate condition of Russmann type. This theorem broadens the scope of applicability of degenerate KAM theory, previously confined to Hamiltonian systems, by incorporating infinite-dimensional reversible systems. Using this theorem, we obtain the existence and linear stability of quasi-periodic solutions for a class of non-Hamiltonian but reversible beam equations with non-linearities in derivatives.
For more information see https://ejde.math.txstate.edu/Volumes/2024/02/abstr.html
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.