S. Rogers, A. Bond, R. Peverall, G. Hancock, Grant Ritchie
{"title":"从空腔击穿光谱法洞察氧等离子体的空间不均匀性","authors":"S. Rogers, A. Bond, R. Peverall, G. Hancock, Grant Ritchie","doi":"10.1088/1361-6595/ad1a79","DOIUrl":null,"url":null,"abstract":"\n Cavity ringdown spectroscopy (CRDS) has been used to investigate the translational and rotational temperatures of the v = 0 and 1 vibrational levels of O2(X) in an inductively coupled plasma at 100 mTorr (13.332 Pa) pressure. All rotational states probed display a clear increase in temperature as plasma power increases: at fixed power, the translational temperature appears largest for rotational states in v = 1 (J = 7, 16, 17, 22) and lowest in the low energy states (J = 1, 18, 19) in v = 0; highly excited rotational states (J = 28, 30, 31) of v = 0 show intermediate behaviour. The rotational temperature values behave similarly. These observations are consistent with the effects of plasma inhomogeneity and can be interpreted with a simple one-dimensional model whereby the pressure, temperature and mole fractions of the various species across the chamber (and arms) are approximated with rational profiles and the corresponding line-of-sight averaged densities and temperatures calculated. This basic model is reasonably successful at reproducing the observations for O2(X, v = 0) and O(3P) densities. The fact that resolving several rotational transitions allows spatial variations within the plasma to be inferred from line-of-sight averaged measurements is an extremely powerful result that could be of great utility in future work.","PeriodicalId":20192,"journal":{"name":"Plasma Sources Science and Technology","volume":"14 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into spatial inhomogeneity in an oxygen plasma from cavity ringdown spectroscopy\",\"authors\":\"S. Rogers, A. Bond, R. Peverall, G. Hancock, Grant Ritchie\",\"doi\":\"10.1088/1361-6595/ad1a79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cavity ringdown spectroscopy (CRDS) has been used to investigate the translational and rotational temperatures of the v = 0 and 1 vibrational levels of O2(X) in an inductively coupled plasma at 100 mTorr (13.332 Pa) pressure. All rotational states probed display a clear increase in temperature as plasma power increases: at fixed power, the translational temperature appears largest for rotational states in v = 1 (J = 7, 16, 17, 22) and lowest in the low energy states (J = 1, 18, 19) in v = 0; highly excited rotational states (J = 28, 30, 31) of v = 0 show intermediate behaviour. The rotational temperature values behave similarly. These observations are consistent with the effects of plasma inhomogeneity and can be interpreted with a simple one-dimensional model whereby the pressure, temperature and mole fractions of the various species across the chamber (and arms) are approximated with rational profiles and the corresponding line-of-sight averaged densities and temperatures calculated. This basic model is reasonably successful at reproducing the observations for O2(X, v = 0) and O(3P) densities. The fact that resolving several rotational transitions allows spatial variations within the plasma to be inferred from line-of-sight averaged measurements is an extremely powerful result that could be of great utility in future work.\",\"PeriodicalId\":20192,\"journal\":{\"name\":\"Plasma Sources Science and Technology\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/ad1a79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6595/ad1a79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Insights into spatial inhomogeneity in an oxygen plasma from cavity ringdown spectroscopy
Cavity ringdown spectroscopy (CRDS) has been used to investigate the translational and rotational temperatures of the v = 0 and 1 vibrational levels of O2(X) in an inductively coupled plasma at 100 mTorr (13.332 Pa) pressure. All rotational states probed display a clear increase in temperature as plasma power increases: at fixed power, the translational temperature appears largest for rotational states in v = 1 (J = 7, 16, 17, 22) and lowest in the low energy states (J = 1, 18, 19) in v = 0; highly excited rotational states (J = 28, 30, 31) of v = 0 show intermediate behaviour. The rotational temperature values behave similarly. These observations are consistent with the effects of plasma inhomogeneity and can be interpreted with a simple one-dimensional model whereby the pressure, temperature and mole fractions of the various species across the chamber (and arms) are approximated with rational profiles and the corresponding line-of-sight averaged densities and temperatures calculated. This basic model is reasonably successful at reproducing the observations for O2(X, v = 0) and O(3P) densities. The fact that resolving several rotational transitions allows spatial variations within the plasma to be inferred from line-of-sight averaged measurements is an extremely powerful result that could be of great utility in future work.