Thomas A. Davidson, Martin Søndergaard, J. Audet, E. Levi, Chiara Esposito, Tuba Bucak, Anders Nielsen
{"title":"临时分层促进了浅富营养化湖泊的大量温室气体排放","authors":"Thomas A. Davidson, Martin Søndergaard, J. Audet, E. Levi, Chiara Esposito, Tuba Bucak, Anders Nielsen","doi":"10.5194/bg-21-93-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Shallow lakes and ponds undergo frequent temporary thermal stratification. How this affects greenhouse gas (GHG) emissions is moot, with both increased and reduced GHG emissions hypothesised. Here, weekly estimations of GHG emissions, over the growing season from May to September, were combined with temperature and oxygen profiles of an 11 ha temperate shallow lake to investigate how thermal stratification shapes GHG emissions. There were three main stratification periods with profound anoxia occurring in the bottom waters upon isolation from the atmosphere. Average diffusive emissions of methane (CH4) and nitrous oxide (N2O) were larger and more variable in the stratified phase, whereas carbon dioxide (CO2) was on average lower, though these differences were not statistically significant. In contrast, there was a significant order of magnitude increase in CH4 ebullition in the stratified phase. Furthermore, at the end of the period of stratification, there was a large efflux of CH4 and CO2 as the lake mixed. Two relatively isolated turnover events were estimated to have released the majority of the CH4 emitted between May and September. These results demonstrate how stratification patterns can shape GHG emissions and highlight the role of turnover emissions and the need for high-frequency measurements of GHG emissions, which are required to accurately characterise emissions, particularly from temporarily stratifying lakes.\n","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"11 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake\",\"authors\":\"Thomas A. Davidson, Martin Søndergaard, J. Audet, E. Levi, Chiara Esposito, Tuba Bucak, Anders Nielsen\",\"doi\":\"10.5194/bg-21-93-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Shallow lakes and ponds undergo frequent temporary thermal stratification. How this affects greenhouse gas (GHG) emissions is moot, with both increased and reduced GHG emissions hypothesised. Here, weekly estimations of GHG emissions, over the growing season from May to September, were combined with temperature and oxygen profiles of an 11 ha temperate shallow lake to investigate how thermal stratification shapes GHG emissions. There were three main stratification periods with profound anoxia occurring in the bottom waters upon isolation from the atmosphere. Average diffusive emissions of methane (CH4) and nitrous oxide (N2O) were larger and more variable in the stratified phase, whereas carbon dioxide (CO2) was on average lower, though these differences were not statistically significant. In contrast, there was a significant order of magnitude increase in CH4 ebullition in the stratified phase. Furthermore, at the end of the period of stratification, there was a large efflux of CH4 and CO2 as the lake mixed. Two relatively isolated turnover events were estimated to have released the majority of the CH4 emitted between May and September. These results demonstrate how stratification patterns can shape GHG emissions and highlight the role of turnover emissions and the need for high-frequency measurements of GHG emissions, which are required to accurately characterise emissions, particularly from temporarily stratifying lakes.\\n\",\"PeriodicalId\":8899,\"journal\":{\"name\":\"Biogeosciences\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogeosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/bg-21-93-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/bg-21-93-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake
Abstract. Shallow lakes and ponds undergo frequent temporary thermal stratification. How this affects greenhouse gas (GHG) emissions is moot, with both increased and reduced GHG emissions hypothesised. Here, weekly estimations of GHG emissions, over the growing season from May to September, were combined with temperature and oxygen profiles of an 11 ha temperate shallow lake to investigate how thermal stratification shapes GHG emissions. There were three main stratification periods with profound anoxia occurring in the bottom waters upon isolation from the atmosphere. Average diffusive emissions of methane (CH4) and nitrous oxide (N2O) were larger and more variable in the stratified phase, whereas carbon dioxide (CO2) was on average lower, though these differences were not statistically significant. In contrast, there was a significant order of magnitude increase in CH4 ebullition in the stratified phase. Furthermore, at the end of the period of stratification, there was a large efflux of CH4 and CO2 as the lake mixed. Two relatively isolated turnover events were estimated to have released the majority of the CH4 emitted between May and September. These results demonstrate how stratification patterns can shape GHG emissions and highlight the role of turnover emissions and the need for high-frequency measurements of GHG emissions, which are required to accurately characterise emissions, particularly from temporarily stratifying lakes.
期刊介绍:
Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.