Fatma A Hashim, Reham R. Mostafa, Ruba Abu Khurma, R. Qaddoura, P. A. Castillo
{"title":"基于改进型海马优化器的全局优化和工程问题解决新方法","authors":"Fatma A Hashim, Reham R. Mostafa, Ruba Abu Khurma, R. Qaddoura, P. A. Castillo","doi":"10.1093/jcde/qwae001","DOIUrl":null,"url":null,"abstract":"\n Sea Horse Optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced locomotion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random movements with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm named mSHO. The enhancement primarily focuses on bolstering SHO's exploitation capabilities by replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques improve mSHO algorithm's search capabilities, allowing it to navigate the search space and converge toward optimal solutions efficiently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 benchmark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms to validate the achieved outcomes. Statistical tests, including Wilcoxon's rank-sum and Friedman's tests, are aptly applied to discern noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navigating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total rank of 1 for CEC’2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value of 0.012665, 2993.634, 0.01266, 1.724967, 263.8915, 0.032255, 58507.14, 1.339956, and 0.23524 for the pressure vessel design, speed reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, multi-Product batch plant, cantilever beam problem, multiple disc clutch brake problems, respectively. Source codes of mSHO are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"13 13","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach for solving global optimization and engineering problems based on modified Sea Horse Optimizer\",\"authors\":\"Fatma A Hashim, Reham R. Mostafa, Ruba Abu Khurma, R. Qaddoura, P. A. Castillo\",\"doi\":\"10.1093/jcde/qwae001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sea Horse Optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced locomotion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random movements with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm named mSHO. The enhancement primarily focuses on bolstering SHO's exploitation capabilities by replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques improve mSHO algorithm's search capabilities, allowing it to navigate the search space and converge toward optimal solutions efficiently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 benchmark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms to validate the achieved outcomes. Statistical tests, including Wilcoxon's rank-sum and Friedman's tests, are aptly applied to discern noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navigating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total rank of 1 for CEC’2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value of 0.012665, 2993.634, 0.01266, 1.724967, 263.8915, 0.032255, 58507.14, 1.339956, and 0.23524 for the pressure vessel design, speed reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, multi-Product batch plant, cantilever beam problem, multiple disc clutch brake problems, respectively. Source codes of mSHO are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"13 13\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae001\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae001","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A new approach for solving global optimization and engineering problems based on modified Sea Horse Optimizer
Sea Horse Optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced locomotion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random movements with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm named mSHO. The enhancement primarily focuses on bolstering SHO's exploitation capabilities by replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques improve mSHO algorithm's search capabilities, allowing it to navigate the search space and converge toward optimal solutions efficiently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 benchmark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms to validate the achieved outcomes. Statistical tests, including Wilcoxon's rank-sum and Friedman's tests, are aptly applied to discern noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navigating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total rank of 1 for CEC’2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value of 0.012665, 2993.634, 0.01266, 1.724967, 263.8915, 0.032255, 58507.14, 1.339956, and 0.23524 for the pressure vessel design, speed reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, multi-Product batch plant, cantilever beam problem, multiple disc clutch brake problems, respectively. Source codes of mSHO are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.