耦合迭代定点逼近的结果

Afeez Oyekanmi, Kamilu Rauf
{"title":"耦合迭代定点逼近的结果","authors":"Afeez Oyekanmi, Kamilu Rauf","doi":"10.56947/amcs.v20.236","DOIUrl":null,"url":null,"abstract":"Let X be a Banach space and F a subset of X. In this paper, we showed weak and strong convergence theorems for a Krasnoselskij-type iterative method to approximate coupled solution of nonexpansive operator E: FxF-> F, where F is nonempty, depending on two variables. Furthermore, we obtained a fixed point for a (b, \\theta, L)-almost contraction operator E: X +X-> X using the Krasnoselskij iteration {xn}n=0infty.","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"35 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results of coupled iterative fixed point approximation\",\"authors\":\"Afeez Oyekanmi, Kamilu Rauf\",\"doi\":\"10.56947/amcs.v20.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a Banach space and F a subset of X. In this paper, we showed weak and strong convergence theorems for a Krasnoselskij-type iterative method to approximate coupled solution of nonexpansive operator E: FxF-> F, where F is nonempty, depending on two variables. Furthermore, we obtained a fixed point for a (b, \\\\theta, L)-almost contraction operator E: X +X-> X using the Krasnoselskij iteration {xn}n=0infty.\",\"PeriodicalId\":504658,\"journal\":{\"name\":\"Annals of Mathematics and Computer Science\",\"volume\":\"35 52\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/amcs.v20.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v20.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 X 是一个巴拿赫空间,F 是 X 的一个子集。在本文中,我们证明了 Krasnoselskij 型迭代法的弱收敛定理和强收敛定理,该迭代法可以近似地求解非膨胀算子 E: FxF-> F 的耦合解,其中 F 是非空的,取决于两个变量。此外,我们利用克拉斯诺瑟尔斯克迭代{xn}n=0infty得到了(b, \theta, L)近似收缩算子E:X +X-> X的定点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Results of coupled iterative fixed point approximation
Let X be a Banach space and F a subset of X. In this paper, we showed weak and strong convergence theorems for a Krasnoselskij-type iterative method to approximate coupled solution of nonexpansive operator E: FxF-> F, where F is nonempty, depending on two variables. Furthermore, we obtained a fixed point for a (b, \theta, L)-almost contraction operator E: X +X-> X using the Krasnoselskij iteration {xn}n=0infty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信