{"title":"耦合迭代定点逼近的结果","authors":"Afeez Oyekanmi, Kamilu Rauf","doi":"10.56947/amcs.v20.236","DOIUrl":null,"url":null,"abstract":"Let X be a Banach space and F a subset of X. In this paper, we showed weak and strong convergence theorems for a Krasnoselskij-type iterative method to approximate coupled solution of nonexpansive operator E: FxF-> F, where F is nonempty, depending on two variables. Furthermore, we obtained a fixed point for a (b, \\theta, L)-almost contraction operator E: X +X-> X using the Krasnoselskij iteration {xn}n=0infty.","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"35 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Results of coupled iterative fixed point approximation\",\"authors\":\"Afeez Oyekanmi, Kamilu Rauf\",\"doi\":\"10.56947/amcs.v20.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a Banach space and F a subset of X. In this paper, we showed weak and strong convergence theorems for a Krasnoselskij-type iterative method to approximate coupled solution of nonexpansive operator E: FxF-> F, where F is nonempty, depending on two variables. Furthermore, we obtained a fixed point for a (b, \\\\theta, L)-almost contraction operator E: X +X-> X using the Krasnoselskij iteration {xn}n=0infty.\",\"PeriodicalId\":504658,\"journal\":{\"name\":\"Annals of Mathematics and Computer Science\",\"volume\":\"35 52\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/amcs.v20.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v20.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 X 是一个巴拿赫空间,F 是 X 的一个子集。在本文中,我们证明了 Krasnoselskij 型迭代法的弱收敛定理和强收敛定理,该迭代法可以近似地求解非膨胀算子 E: FxF-> F 的耦合解,其中 F 是非空的,取决于两个变量。此外,我们利用克拉斯诺瑟尔斯克迭代{xn}n=0infty得到了(b, \theta, L)近似收缩算子E:X +X-> X的定点。
Results of coupled iterative fixed point approximation
Let X be a Banach space and F a subset of X. In this paper, we showed weak and strong convergence theorems for a Krasnoselskij-type iterative method to approximate coupled solution of nonexpansive operator E: FxF-> F, where F is nonempty, depending on two variables. Furthermore, we obtained a fixed point for a (b, \theta, L)-almost contraction operator E: X +X-> X using the Krasnoselskij iteration {xn}n=0infty.