Beiyan He, Chunli Zhu, Zhongxiang Li, Chun Hu, Dezhi Zheng
{"title":"基于贝叶斯 CNN 的传感器故障诊断融合框架","authors":"Beiyan He, Chunli Zhu, Zhongxiang Li, Chun Hu, Dezhi Zheng","doi":"10.1088/1361-6501/ad1a86","DOIUrl":null,"url":null,"abstract":"\n Sensors equipped on the high-speed train provide large amounts of data which contributes to its state monitoring. However, it is challenging to distinguish whether the fault originates from the mechanical component or the sensors themselves. The main difficulties lie in the biased amount of normal and fault data as well as the deficiency of multi-source data’s inherent correlation. In this paper, we propose a Bayesian Convolutional neural networks (CNN)-based fusion framework to enhance the ability to identify sensor errors. The framework utilizes wavelet time-frequency maps to extract abnormal features, employs a Bayesian CNN to obtain spatial features from a single sensor, integrates multi-source features via Bidirectional Long Short-Term Memory Network (Bi-LSTM) and enhances the acquired spatial and temporal features using an attention mechanism. The enhanced information finally generated leads to precise identification of the sensor faults. The proposed feature-level fusion framework and the associated attention mechanism facilitate discovering the inherent correlation and filtering of irrelevant information. Results indicate that our proposed method achieves 95.4% in terms of accuracy, which outperforms methods relying on feature extraction with single-source sensors by 7.8%.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"97 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian CNN-based Fusion Framework of Sensor Fault Diagnosis\",\"authors\":\"Beiyan He, Chunli Zhu, Zhongxiang Li, Chun Hu, Dezhi Zheng\",\"doi\":\"10.1088/1361-6501/ad1a86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sensors equipped on the high-speed train provide large amounts of data which contributes to its state monitoring. However, it is challenging to distinguish whether the fault originates from the mechanical component or the sensors themselves. The main difficulties lie in the biased amount of normal and fault data as well as the deficiency of multi-source data’s inherent correlation. In this paper, we propose a Bayesian Convolutional neural networks (CNN)-based fusion framework to enhance the ability to identify sensor errors. The framework utilizes wavelet time-frequency maps to extract abnormal features, employs a Bayesian CNN to obtain spatial features from a single sensor, integrates multi-source features via Bidirectional Long Short-Term Memory Network (Bi-LSTM) and enhances the acquired spatial and temporal features using an attention mechanism. The enhanced information finally generated leads to precise identification of the sensor faults. The proposed feature-level fusion framework and the associated attention mechanism facilitate discovering the inherent correlation and filtering of irrelevant information. Results indicate that our proposed method achieves 95.4% in terms of accuracy, which outperforms methods relying on feature extraction with single-source sensors by 7.8%.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"97 23\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1a86\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1a86","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Bayesian CNN-based Fusion Framework of Sensor Fault Diagnosis
Sensors equipped on the high-speed train provide large amounts of data which contributes to its state monitoring. However, it is challenging to distinguish whether the fault originates from the mechanical component or the sensors themselves. The main difficulties lie in the biased amount of normal and fault data as well as the deficiency of multi-source data’s inherent correlation. In this paper, we propose a Bayesian Convolutional neural networks (CNN)-based fusion framework to enhance the ability to identify sensor errors. The framework utilizes wavelet time-frequency maps to extract abnormal features, employs a Bayesian CNN to obtain spatial features from a single sensor, integrates multi-source features via Bidirectional Long Short-Term Memory Network (Bi-LSTM) and enhances the acquired spatial and temporal features using an attention mechanism. The enhanced information finally generated leads to precise identification of the sensor faults. The proposed feature-level fusion framework and the associated attention mechanism facilitate discovering the inherent correlation and filtering of irrelevant information. Results indicate that our proposed method achieves 95.4% in terms of accuracy, which outperforms methods relying on feature extraction with single-source sensors by 7.8%.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.