Jwwad M. Javed, Katherine Scukas, Michelle T. Nguyen, Amelia Fuller
{"title":"芳香族残基定位影响水溶液中的螺旋蛋白胨结构","authors":"Jwwad M. Javed, Katherine Scukas, Michelle T. Nguyen, Amelia Fuller","doi":"10.1055/a-2238-5394","DOIUrl":null,"url":null,"abstract":"Water-soluble peptidomimetics, including peptoids, are promising functional surrogates for biologically relevant, amphiphilic, helical peptides. Twenty amphiphilic peptoid hexamers with predicted helical structures were designed, prepared and studied using circular dichroism (CD) spectroscopy. The site-specific contributions of aromatic and charged residues to the helical structure of peptoid hexamers in aqueous solution was evaluated, revealing that aromatic residue positioning most significantly impacts structure.","PeriodicalId":509029,"journal":{"name":"Synlett","volume":"62 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aromatic residue positioning influences helical peptoid structure in aqueous solution\",\"authors\":\"Jwwad M. Javed, Katherine Scukas, Michelle T. Nguyen, Amelia Fuller\",\"doi\":\"10.1055/a-2238-5394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water-soluble peptidomimetics, including peptoids, are promising functional surrogates for biologically relevant, amphiphilic, helical peptides. Twenty amphiphilic peptoid hexamers with predicted helical structures were designed, prepared and studied using circular dichroism (CD) spectroscopy. The site-specific contributions of aromatic and charged residues to the helical structure of peptoid hexamers in aqueous solution was evaluated, revealing that aromatic residue positioning most significantly impacts structure.\",\"PeriodicalId\":509029,\"journal\":{\"name\":\"Synlett\",\"volume\":\"62 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synlett\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2238-5394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2238-5394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aromatic residue positioning influences helical peptoid structure in aqueous solution
Water-soluble peptidomimetics, including peptoids, are promising functional surrogates for biologically relevant, amphiphilic, helical peptides. Twenty amphiphilic peptoid hexamers with predicted helical structures were designed, prepared and studied using circular dichroism (CD) spectroscopy. The site-specific contributions of aromatic and charged residues to the helical structure of peptoid hexamers in aqueous solution was evaluated, revealing that aromatic residue positioning most significantly impacts structure.