{"title":"半简单有限群代数的韦德本分量简述","authors":"Gaurav Mittal, Rajendra Sharma","doi":"10.55630/serdica.2023.49.241-250","DOIUrl":null,"url":null,"abstract":"One of the classical problems in the subject of group algebras is that of deducing Wedderburn decomposition of a finite semisimple group algebra. In this short note, we discuss how to check whether a matrix ring over a finite field is a Wedderburn component of the Wedderburn decomposition of a group algebra or not. Finally, we formulate an open problem in this direction.","PeriodicalId":509503,"journal":{"name":"Serdica Mathematical Journal","volume":"64 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A short note on the Wedderburn components of a semisimple finite group algebra\",\"authors\":\"Gaurav Mittal, Rajendra Sharma\",\"doi\":\"10.55630/serdica.2023.49.241-250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the classical problems in the subject of group algebras is that of deducing Wedderburn decomposition of a finite semisimple group algebra. In this short note, we discuss how to check whether a matrix ring over a finite field is a Wedderburn component of the Wedderburn decomposition of a group algebra or not. Finally, we formulate an open problem in this direction.\",\"PeriodicalId\":509503,\"journal\":{\"name\":\"Serdica Mathematical Journal\",\"volume\":\"64 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Serdica Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55630/serdica.2023.49.241-250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serdica Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/serdica.2023.49.241-250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A short note on the Wedderburn components of a semisimple finite group algebra
One of the classical problems in the subject of group algebras is that of deducing Wedderburn decomposition of a finite semisimple group algebra. In this short note, we discuss how to check whether a matrix ring over a finite field is a Wedderburn component of the Wedderburn decomposition of a group algebra or not. Finally, we formulate an open problem in this direction.