{"title":"阿贝尔沙堆模型随机微分方程的乘法重正化","authors":"Dimitri Volchenkov","doi":"10.3390/dynamics4010003","DOIUrl":null,"url":null,"abstract":"The long-term, large-scale behavior in a problem of stochastic nonlinear dynamics corresponding to the Abelian sandpile model is studied with the use of the quantum-field theory renormalization group approach. We prove the multiplicative renormalization of the model including an infinite number of coupling parameters, calculate an infinite number of renormalization constants, identify a plane of fixed points in the infinite dimensional space of coupling parameters, discuss their stability and critical scaling in the model, and formulate a simple law relating the asymptotic size of an avalanche to a model exponent quantifying the time-scale separation between the slow energy injection and fast avalanche relaxation processes.","PeriodicalId":507568,"journal":{"name":"Dynamics","volume":"59 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative Renormalization of Stochastic Differential Equations for the Abelian Sandpile Model\",\"authors\":\"Dimitri Volchenkov\",\"doi\":\"10.3390/dynamics4010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The long-term, large-scale behavior in a problem of stochastic nonlinear dynamics corresponding to the Abelian sandpile model is studied with the use of the quantum-field theory renormalization group approach. We prove the multiplicative renormalization of the model including an infinite number of coupling parameters, calculate an infinite number of renormalization constants, identify a plane of fixed points in the infinite dimensional space of coupling parameters, discuss their stability and critical scaling in the model, and formulate a simple law relating the asymptotic size of an avalanche to a model exponent quantifying the time-scale separation between the slow energy injection and fast avalanche relaxation processes.\",\"PeriodicalId\":507568,\"journal\":{\"name\":\"Dynamics\",\"volume\":\"59 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics4010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics4010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiplicative Renormalization of Stochastic Differential Equations for the Abelian Sandpile Model
The long-term, large-scale behavior in a problem of stochastic nonlinear dynamics corresponding to the Abelian sandpile model is studied with the use of the quantum-field theory renormalization group approach. We prove the multiplicative renormalization of the model including an infinite number of coupling parameters, calculate an infinite number of renormalization constants, identify a plane of fixed points in the infinite dimensional space of coupling parameters, discuss their stability and critical scaling in the model, and formulate a simple law relating the asymptotic size of an avalanche to a model exponent quantifying the time-scale separation between the slow energy injection and fast avalanche relaxation processes.