通过基于共溶剂的电流体动力打印技术原位精确制备 Perovskite 单晶阵列

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rui Yu, Wenshuo Xie, Weili Yang, Xinrui Yang, Yongqing Duan
{"title":"通过基于共溶剂的电流体动力打印技术原位精确制备 Perovskite 单晶阵列","authors":"Rui Yu, Wenshuo Xie, Weili Yang, Xinrui Yang, Yongqing Duan","doi":"10.1088/1361-6439/ad1b1b","DOIUrl":null,"url":null,"abstract":"\n Single crystal (SC) perovskites exhibit superior stability and optoelectronic performance compared to polycrystalline ones, offering significant potential for high-performance and low-cost photovoltaic/optoelectronic applications. However, conventional SC growth processes often require intricate cutting or transferring of SC in the manufacturing of optoelectronic devices. High-resolution, in-situ, and scalable fabrication of perovskite SC arrays remain challenging. In this work, we propose a method for in-situ deposition of cosolvent based perovskite precursor solutions using electrohydrodynamic (EHD) printing technology. The addition of a cosolvent (which exhibits good chemical compatibility with the precursor and the main solvent, accompanied by lower solubility and vapor pressure) to the mixed solution promotes early-stage supersaturation and nucleation in the solution, enabling precise control over crystal morphology, size, and positioning through in-situ EHD printing. The effect of different cosolvent ratios on SC growth and the inhibition of parasitic crystallization by altering the contact angle of substrate were investigated. Finally, the parameters for precise control of the EHD printing process were investigated, enabling the growth of SC arrays ranging from 1 to 35 μm in size. This strategy offers a direct patterning approach for SC perovskite preparation without complex temperature control or multi-step operation. The printed patterns exhibit high resolution and excellent uniformity, offering significant potential for manufacturing SC-based perovskite optoelectronic devices with precise size and positioning control.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise In-situ Fabrication of Perovskite Single Crystal Arrays via Cosolvent based Electrohydrodynamic Printing\",\"authors\":\"Rui Yu, Wenshuo Xie, Weili Yang, Xinrui Yang, Yongqing Duan\",\"doi\":\"10.1088/1361-6439/ad1b1b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Single crystal (SC) perovskites exhibit superior stability and optoelectronic performance compared to polycrystalline ones, offering significant potential for high-performance and low-cost photovoltaic/optoelectronic applications. However, conventional SC growth processes often require intricate cutting or transferring of SC in the manufacturing of optoelectronic devices. High-resolution, in-situ, and scalable fabrication of perovskite SC arrays remain challenging. In this work, we propose a method for in-situ deposition of cosolvent based perovskite precursor solutions using electrohydrodynamic (EHD) printing technology. The addition of a cosolvent (which exhibits good chemical compatibility with the precursor and the main solvent, accompanied by lower solubility and vapor pressure) to the mixed solution promotes early-stage supersaturation and nucleation in the solution, enabling precise control over crystal morphology, size, and positioning through in-situ EHD printing. The effect of different cosolvent ratios on SC growth and the inhibition of parasitic crystallization by altering the contact angle of substrate were investigated. Finally, the parameters for precise control of the EHD printing process were investigated, enabling the growth of SC arrays ranging from 1 to 35 μm in size. This strategy offers a direct patterning approach for SC perovskite preparation without complex temperature control or multi-step operation. The printed patterns exhibit high resolution and excellent uniformity, offering significant potential for manufacturing SC-based perovskite optoelectronic devices with precise size and positioning control.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/ad1b1b\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad1b1b","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

与多晶体相比,单晶(SC)包晶石具有更高的稳定性和光电性能,为高性能、低成本的光伏/光电应用提供了巨大潜力。然而,在制造光电器件时,传统的多晶体生长工艺往往需要对多晶体进行复杂的切割或转移。高分辨率、原位和可扩展的制造包晶SC阵列仍然具有挑战性。在这项工作中,我们提出了一种利用电流体动力(EHD)印刷技术原位沉积共溶剂型包晶前驱体溶液的方法。在混合溶液中加入共溶剂(与前驱体和主溶剂具有良好的化学相容性,同时具有较低的溶解度和蒸汽压)可促进溶液的早期过饱和和成核,从而通过原位 EHD 印刷技术实现对晶体形态、尺寸和定位的精确控制。研究了不同共溶剂比例对 SC 生长的影响,以及通过改变基底的接触角来抑制寄生结晶。最后,研究了精确控制 EHD 印刷过程的参数,使 SC 阵列的生长尺寸从 1 微米到 35 微米不等。这种策略为制备 SC 包晶提供了一种直接图案化方法,无需复杂的温度控制或多步骤操作。印刷图案具有高分辨率和极佳的均匀性,为制造具有精确尺寸和定位控制的 SC 型包晶光电器件提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precise In-situ Fabrication of Perovskite Single Crystal Arrays via Cosolvent based Electrohydrodynamic Printing
Single crystal (SC) perovskites exhibit superior stability and optoelectronic performance compared to polycrystalline ones, offering significant potential for high-performance and low-cost photovoltaic/optoelectronic applications. However, conventional SC growth processes often require intricate cutting or transferring of SC in the manufacturing of optoelectronic devices. High-resolution, in-situ, and scalable fabrication of perovskite SC arrays remain challenging. In this work, we propose a method for in-situ deposition of cosolvent based perovskite precursor solutions using electrohydrodynamic (EHD) printing technology. The addition of a cosolvent (which exhibits good chemical compatibility with the precursor and the main solvent, accompanied by lower solubility and vapor pressure) to the mixed solution promotes early-stage supersaturation and nucleation in the solution, enabling precise control over crystal morphology, size, and positioning through in-situ EHD printing. The effect of different cosolvent ratios on SC growth and the inhibition of parasitic crystallization by altering the contact angle of substrate were investigated. Finally, the parameters for precise control of the EHD printing process were investigated, enabling the growth of SC arrays ranging from 1 to 35 μm in size. This strategy offers a direct patterning approach for SC perovskite preparation without complex temperature control or multi-step operation. The printed patterns exhibit high resolution and excellent uniformity, offering significant potential for manufacturing SC-based perovskite optoelectronic devices with precise size and positioning control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信