平面波流体压力扰动导致一维(非)弹性介质变形的综合理论

Zongbo Xu, Philippe Lognonné
{"title":"平面波流体压力扰动导致一维(非)弹性介质变形的综合理论","authors":"Zongbo Xu, Philippe Lognonné","doi":"10.1093/gji/ggae005","DOIUrl":null,"url":null,"abstract":"\n Atmospheric and oceanic pressure perturbations deform the ground surface and the seafloor, respectively. This mechanical deformation, where the fluid perturbations propagate as plane waves, occurs not only on Earth but also on other planets/bodies with atmospheres, such as Mars, Titan, and Venus. Studying this type of deformation improves our understanding of the mechanical interaction between the fluid layer (atmosphere/ocean) and the underlying solid planet/body, and aids investigation of subsurface structures. In this study, we utilize eigenfunction theory to unify existing theories for modelling this deformation and to comprehensively demonstrate possible scenarios of this deformation in homogeneous and 1D elastic media, including static loading, air-coupled Rayleigh waves, and leaky-mode surface waves. Our computations quantitatively reveal that the deformation amplitude generally decays with depth and that reducing seismic noise due to Martian atmosphere requires deploying seismometers at least 1 m beneath Martian surface. We also apply our theory to illustrate how this deformation and the corresponding air-to-solid energy conversion vary on different planetary bodies. Finally, we discuss how medium anelasticity and other factors affect this deformation.","PeriodicalId":502458,"journal":{"name":"Geophysical Journal International","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive theory for 1D (an)elastic medium deformation due to plane-wave fluid pressure perturbation\",\"authors\":\"Zongbo Xu, Philippe Lognonné\",\"doi\":\"10.1093/gji/ggae005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Atmospheric and oceanic pressure perturbations deform the ground surface and the seafloor, respectively. This mechanical deformation, where the fluid perturbations propagate as plane waves, occurs not only on Earth but also on other planets/bodies with atmospheres, such as Mars, Titan, and Venus. Studying this type of deformation improves our understanding of the mechanical interaction between the fluid layer (atmosphere/ocean) and the underlying solid planet/body, and aids investigation of subsurface structures. In this study, we utilize eigenfunction theory to unify existing theories for modelling this deformation and to comprehensively demonstrate possible scenarios of this deformation in homogeneous and 1D elastic media, including static loading, air-coupled Rayleigh waves, and leaky-mode surface waves. Our computations quantitatively reveal that the deformation amplitude generally decays with depth and that reducing seismic noise due to Martian atmosphere requires deploying seismometers at least 1 m beneath Martian surface. We also apply our theory to illustrate how this deformation and the corresponding air-to-solid energy conversion vary on different planetary bodies. Finally, we discuss how medium anelasticity and other factors affect this deformation.\",\"PeriodicalId\":502458,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gji/ggae005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大气和海洋压力扰动分别使地表和海底变形。这种流体扰动以平面波形式传播的机械变形不仅发生在地球上,也发生在其他有大气层的行星/天体上,如火星、土卫六和金星。研究这种类型的形变可以加深我们对流体层(大气层/海洋)与下层固体行星/天体之间机械相互作用的理解,并有助于对地表下结构的研究。在这项研究中,我们利用特征函数理论统一了现有的模拟这种形变的理论,并全面展示了这种形变在均质和一维弹性介质中的可能情况,包括静态加载、空气耦合瑞利波和泄漏模式表面波。我们的计算定量地揭示了形变振幅一般随深度衰减,要减少火星大气造成的地震噪声,需要在火星表面下至少 1 米处部署地震仪。我们还运用我们的理论说明了这种形变和相应的空气-固体能量转换在不同行星体上的差异。最后,我们讨论了介质弹性和其他因素如何影响这种变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive theory for 1D (an)elastic medium deformation due to plane-wave fluid pressure perturbation
Atmospheric and oceanic pressure perturbations deform the ground surface and the seafloor, respectively. This mechanical deformation, where the fluid perturbations propagate as plane waves, occurs not only on Earth but also on other planets/bodies with atmospheres, such as Mars, Titan, and Venus. Studying this type of deformation improves our understanding of the mechanical interaction between the fluid layer (atmosphere/ocean) and the underlying solid planet/body, and aids investigation of subsurface structures. In this study, we utilize eigenfunction theory to unify existing theories for modelling this deformation and to comprehensively demonstrate possible scenarios of this deformation in homogeneous and 1D elastic media, including static loading, air-coupled Rayleigh waves, and leaky-mode surface waves. Our computations quantitatively reveal that the deformation amplitude generally decays with depth and that reducing seismic noise due to Martian atmosphere requires deploying seismometers at least 1 m beneath Martian surface. We also apply our theory to illustrate how this deformation and the corresponding air-to-solid energy conversion vary on different planetary bodies. Finally, we discuss how medium anelasticity and other factors affect this deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信