{"title":"通过图像语义分割探索鲁迅故里绍兴街道的空间属性","authors":"Qingyuan Hong","doi":"10.36922/jcau.1736","DOIUrl":null,"url":null,"abstract":"Image semantic segmentation, a deep learning algorithm, enables the recognition of pixel collections that form distinct categories, allowing for the identification of vehicles, pedestrians, traffic signs, pavement, and other road features. In urban and architectural design domains, image semantic segmentation and related techniques empower practitioners and researchers to efficiently analyze the distribution of public spaces. This application facilitates a better understanding of how people interact with urban environments, ultimately improving the design of functional and inviting spaces. This paper presents an analysis of images of different streets within the Lu Xun Heritage Area in Shaoxing, Zhejiang Province, China, which were obtained through onsite photography. The images were sampled, segmented, and compared to assess the spatial characteristics of distinct street types. A self-trained semantic segmentation model based on the Cityscapes dataset and the PaddlePaddle framework was employed to statistically analyze space variations across various dimensions. This analysis contributes to a better understanding of historical street structure and provides insights into the integration of artificial intelligence in urban planning and design.","PeriodicalId":429385,"journal":{"name":"Journal of Chinese Architecture and Urbanism","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the spatial attributes of streets in Lu Xun’s hometown of Shaoxing, China, through image semantic segmentation\",\"authors\":\"Qingyuan Hong\",\"doi\":\"10.36922/jcau.1736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image semantic segmentation, a deep learning algorithm, enables the recognition of pixel collections that form distinct categories, allowing for the identification of vehicles, pedestrians, traffic signs, pavement, and other road features. In urban and architectural design domains, image semantic segmentation and related techniques empower practitioners and researchers to efficiently analyze the distribution of public spaces. This application facilitates a better understanding of how people interact with urban environments, ultimately improving the design of functional and inviting spaces. This paper presents an analysis of images of different streets within the Lu Xun Heritage Area in Shaoxing, Zhejiang Province, China, which were obtained through onsite photography. The images were sampled, segmented, and compared to assess the spatial characteristics of distinct street types. A self-trained semantic segmentation model based on the Cityscapes dataset and the PaddlePaddle framework was employed to statistically analyze space variations across various dimensions. This analysis contributes to a better understanding of historical street structure and provides insights into the integration of artificial intelligence in urban planning and design.\",\"PeriodicalId\":429385,\"journal\":{\"name\":\"Journal of Chinese Architecture and Urbanism\",\"volume\":\"3 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chinese Architecture and Urbanism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/jcau.1736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chinese Architecture and Urbanism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/jcau.1736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the spatial attributes of streets in Lu Xun’s hometown of Shaoxing, China, through image semantic segmentation
Image semantic segmentation, a deep learning algorithm, enables the recognition of pixel collections that form distinct categories, allowing for the identification of vehicles, pedestrians, traffic signs, pavement, and other road features. In urban and architectural design domains, image semantic segmentation and related techniques empower practitioners and researchers to efficiently analyze the distribution of public spaces. This application facilitates a better understanding of how people interact with urban environments, ultimately improving the design of functional and inviting spaces. This paper presents an analysis of images of different streets within the Lu Xun Heritage Area in Shaoxing, Zhejiang Province, China, which were obtained through onsite photography. The images were sampled, segmented, and compared to assess the spatial characteristics of distinct street types. A self-trained semantic segmentation model based on the Cityscapes dataset and the PaddlePaddle framework was employed to statistically analyze space variations across various dimensions. This analysis contributes to a better understanding of historical street structure and provides insights into the integration of artificial intelligence in urban planning and design.