Tao Wang, Peng Huang, Lang Li, Yingming Zhou, Guihua Zeng
{"title":"利用电信光学元件实现高密钥速率连续可变量子密钥分发","authors":"Tao Wang, Peng Huang, Lang Li, Yingming Zhou, Guihua Zeng","doi":"10.1088/1367-2630/ad1b7e","DOIUrl":null,"url":null,"abstract":"\n Quantum key distribution (QKD) is one quantum technology that can provide secure encryption keys for data transmission. The secret key rate is a core performance indicator in QKD, which directly determines the transmission rate of enciphered data. Here, for the first time, we demonstrate a high-key-rate Gaussian-modulated continuous-variable QKD (CV-QKD) using telecom optical components. The framework of CV-QKD over these components is constructed. Specifically, the high-rate low-noise Gaussian modulation of coherent states is realized by a classical optical IQ modulator. High-baud low-intensity quantum signals are received by an integrated coherent receiver under the shot-noise limit. A series of digital signal processing algorithms are proposed to achieve accurate signal recovery and key distillation. The system can yield a high asymptotic secret key rate of 10.37 Mbps within 20 km standard telecom fiber, and the secure distance can exceed 100 km. This result confirms the feasibility of CV-QKD with state-of-the-art performance using telecom optical components. Besides, due to the ease of integrating these discrete components, it provides a high-performance and miniaturized QKD solution for the metropolitan quantum network.","PeriodicalId":508829,"journal":{"name":"New Journal of Physics","volume":"27 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High key rate continuous-variable quantum key distribution using telecom optical components\",\"authors\":\"Tao Wang, Peng Huang, Lang Li, Yingming Zhou, Guihua Zeng\",\"doi\":\"10.1088/1367-2630/ad1b7e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Quantum key distribution (QKD) is one quantum technology that can provide secure encryption keys for data transmission. The secret key rate is a core performance indicator in QKD, which directly determines the transmission rate of enciphered data. Here, for the first time, we demonstrate a high-key-rate Gaussian-modulated continuous-variable QKD (CV-QKD) using telecom optical components. The framework of CV-QKD over these components is constructed. Specifically, the high-rate low-noise Gaussian modulation of coherent states is realized by a classical optical IQ modulator. High-baud low-intensity quantum signals are received by an integrated coherent receiver under the shot-noise limit. A series of digital signal processing algorithms are proposed to achieve accurate signal recovery and key distillation. The system can yield a high asymptotic secret key rate of 10.37 Mbps within 20 km standard telecom fiber, and the secure distance can exceed 100 km. This result confirms the feasibility of CV-QKD with state-of-the-art performance using telecom optical components. Besides, due to the ease of integrating these discrete components, it provides a high-performance and miniaturized QKD solution for the metropolitan quantum network.\",\"PeriodicalId\":508829,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"27 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad1b7e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad1b7e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High key rate continuous-variable quantum key distribution using telecom optical components
Quantum key distribution (QKD) is one quantum technology that can provide secure encryption keys for data transmission. The secret key rate is a core performance indicator in QKD, which directly determines the transmission rate of enciphered data. Here, for the first time, we demonstrate a high-key-rate Gaussian-modulated continuous-variable QKD (CV-QKD) using telecom optical components. The framework of CV-QKD over these components is constructed. Specifically, the high-rate low-noise Gaussian modulation of coherent states is realized by a classical optical IQ modulator. High-baud low-intensity quantum signals are received by an integrated coherent receiver under the shot-noise limit. A series of digital signal processing algorithms are proposed to achieve accurate signal recovery and key distillation. The system can yield a high asymptotic secret key rate of 10.37 Mbps within 20 km standard telecom fiber, and the secure distance can exceed 100 km. This result confirms the feasibility of CV-QKD with state-of-the-art performance using telecom optical components. Besides, due to the ease of integrating these discrete components, it provides a high-performance and miniaturized QKD solution for the metropolitan quantum network.