{"title":"利用滤波模式对单像素成像进行在线去噪","authors":"Zhaohua Yang, Xiang Chen, Zhihao Zhao, Lingan Wu, Yuanjin Yu","doi":"10.3390/photonics11010059","DOIUrl":null,"url":null,"abstract":"Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms can significantly improve image quality, they introduce additional processing time. To address this issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which uses the filter to optimize the illumination modulation patterns. The image is retrieved through the second-order correlation between the modulation patterns and the intensities detected by the single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed by post-filtering procedures, but the post-processing time is reduced for the same image quality. This method offers a new way for rapid denoising in SPI, and it should be particularly advantageous in applications where time-saving is of paramount importance, such as in image-free large target classification.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"107 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Denoising Single-Pixel Imaging Using Filtered Patterns\",\"authors\":\"Zhaohua Yang, Xiang Chen, Zhihao Zhao, Lingan Wu, Yuanjin Yu\",\"doi\":\"10.3390/photonics11010059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms can significantly improve image quality, they introduce additional processing time. To address this issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which uses the filter to optimize the illumination modulation patterns. The image is retrieved through the second-order correlation between the modulation patterns and the intensities detected by the single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed by post-filtering procedures, but the post-processing time is reduced for the same image quality. This method offers a new way for rapid denoising in SPI, and it should be particularly advantageous in applications where time-saving is of paramount importance, such as in image-free large target classification.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"107 5\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010059\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Online Denoising Single-Pixel Imaging Using Filtered Patterns
Noise is inevitable in single-pixel imaging (SPI). Although post-processing algorithms can significantly improve image quality, they introduce additional processing time. To address this issue, we propose an online denoising single-pixel imaging scheme at the sampling stage, which uses the filter to optimize the illumination modulation patterns. The image is retrieved through the second-order correlation between the modulation patterns and the intensities detected by the single-pixel detector. Through simulations and experiments, we analyzed the impact of sampling rate, noise intensity, and filter template on the reconstructed images of both binary and grayscale objects. The results demonstrate that the denoising effect is comparable to the imaging-first followed by post-filtering procedures, but the post-processing time is reduced for the same image quality. This method offers a new way for rapid denoising in SPI, and it should be particularly advantageous in applications where time-saving is of paramount importance, such as in image-free large target classification.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.