{"title":"基于改进型高效特征提取技术的光纤周界安全系统智能入侵检测","authors":"Zhenshi Sun, Zheng Guo","doi":"10.1088/1361-6501/ad1b9f","DOIUrl":null,"url":null,"abstract":"\n The automated analysis of optical fiber vibration sensing data has been highly demanded in engineering applications. Therefore, intrusion analysis, which aims at detecting, recognizing, and classifying intrusions, holds great importance for optical fiber vibration sensing. In this work, an intelligent intrusion detection scheme employing an improved high-efficiency feature extraction technique and utilizing a dual Mach-Zehnder interferometer (DMZI)-based optical fiber perimeter security system is proposed. So, the DMZI-based perimeter security system in practical settings can be successfully established. Specifically, time-frequency feature vectors with nine features are firstly constructed using a maximal overlap discrete wavelet transformation approach and a zero crossing rate method. Then, the feature vectors are classified into corresponding categories using a radial basis function neural network. The effectiveness of the proposed scheme has been validated using six types of human intrusions, such as knocking, climbing, waggling, cutting, crashing and kicking the fence. The results show that the given intrusions can be accurately and rapidly recognized by the proposed scheme. The average recognition rate of 95.0% is achieved, and the average processing time for each sample data is only 0.033 s, which is significantly lower than the sampling interval (0.3 s) in our experiment. It is believed that the proposed scheme holds promising potential in the field of optical fiber perimeter security systems.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"25 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent intrusion detection for optical fiber perimeter security system based on an improved high efficiency feature extraction technique\",\"authors\":\"Zhenshi Sun, Zheng Guo\",\"doi\":\"10.1088/1361-6501/ad1b9f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The automated analysis of optical fiber vibration sensing data has been highly demanded in engineering applications. Therefore, intrusion analysis, which aims at detecting, recognizing, and classifying intrusions, holds great importance for optical fiber vibration sensing. In this work, an intelligent intrusion detection scheme employing an improved high-efficiency feature extraction technique and utilizing a dual Mach-Zehnder interferometer (DMZI)-based optical fiber perimeter security system is proposed. So, the DMZI-based perimeter security system in practical settings can be successfully established. Specifically, time-frequency feature vectors with nine features are firstly constructed using a maximal overlap discrete wavelet transformation approach and a zero crossing rate method. Then, the feature vectors are classified into corresponding categories using a radial basis function neural network. The effectiveness of the proposed scheme has been validated using six types of human intrusions, such as knocking, climbing, waggling, cutting, crashing and kicking the fence. The results show that the given intrusions can be accurately and rapidly recognized by the proposed scheme. The average recognition rate of 95.0% is achieved, and the average processing time for each sample data is only 0.033 s, which is significantly lower than the sampling interval (0.3 s) in our experiment. It is believed that the proposed scheme holds promising potential in the field of optical fiber perimeter security systems.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad1b9f\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad1b9f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Intelligent intrusion detection for optical fiber perimeter security system based on an improved high efficiency feature extraction technique
The automated analysis of optical fiber vibration sensing data has been highly demanded in engineering applications. Therefore, intrusion analysis, which aims at detecting, recognizing, and classifying intrusions, holds great importance for optical fiber vibration sensing. In this work, an intelligent intrusion detection scheme employing an improved high-efficiency feature extraction technique and utilizing a dual Mach-Zehnder interferometer (DMZI)-based optical fiber perimeter security system is proposed. So, the DMZI-based perimeter security system in practical settings can be successfully established. Specifically, time-frequency feature vectors with nine features are firstly constructed using a maximal overlap discrete wavelet transformation approach and a zero crossing rate method. Then, the feature vectors are classified into corresponding categories using a radial basis function neural network. The effectiveness of the proposed scheme has been validated using six types of human intrusions, such as knocking, climbing, waggling, cutting, crashing and kicking the fence. The results show that the given intrusions can be accurately and rapidly recognized by the proposed scheme. The average recognition rate of 95.0% is achieved, and the average processing time for each sample data is only 0.033 s, which is significantly lower than the sampling interval (0.3 s) in our experiment. It is believed that the proposed scheme holds promising potential in the field of optical fiber perimeter security systems.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.