带脉冲效应的 Ψ-Caputo 微分方程的近似可控性研究

IF 0.6 Q3 MATHEMATICS
C. S. V. Varun Bose, R. Udhayakumar, V. Muthukumaran, S. Al-Omari
{"title":"带脉冲效应的 Ψ-Caputo 微分方程的近似可控性研究","authors":"C. S. V. Varun Bose, R. Udhayakumar, V. Muthukumaran, S. Al-Omari","doi":"10.37256/cm.5120243539","DOIUrl":null,"url":null,"abstract":"In this article, we studied the approximate controllability of Ψ-Caputo fractional differential systems. We prove the sufficient conditions for an abstract Cauchy problem invloving infinite delay, impulsive and nonlocal conditions. The result is shown by means of the infinitesimal operator, semigroup theory, fractional calculus, and Schauder’s fixed point theorem. First, we prove the existence of the mild solution and demonstrate that the Ψ-Caputo fractional system is approximately controllable. Finally, an example is given to analyse the obtained results.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":"4 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Approximate Controllability of Ψ-Caputo Fractional Differential Equations with Impulsive Effects\",\"authors\":\"C. S. V. Varun Bose, R. Udhayakumar, V. Muthukumaran, S. Al-Omari\",\"doi\":\"10.37256/cm.5120243539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we studied the approximate controllability of Ψ-Caputo fractional differential systems. We prove the sufficient conditions for an abstract Cauchy problem invloving infinite delay, impulsive and nonlocal conditions. The result is shown by means of the infinitesimal operator, semigroup theory, fractional calculus, and Schauder’s fixed point theorem. First, we prove the existence of the mild solution and demonstrate that the Ψ-Caputo fractional system is approximately controllable. Finally, an example is given to analyse the obtained results.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120243539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120243539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Ψ-卡普托分数微分系统的近似可控性。我们证明了包含无限延迟、脉冲和非局部条件的抽象 Cauchy 问题的充分条件。我们通过无穷小算子、半群理论、分数微积分和 Schauder 定点定理证明了这一结果。首先,我们证明了温和解的存在,并证明Ψ-卡普托分数系统是近似可控的。最后,我们给出了一个例子来分析所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Approximate Controllability of Ψ-Caputo Fractional Differential Equations with Impulsive Effects
In this article, we studied the approximate controllability of Ψ-Caputo fractional differential systems. We prove the sufficient conditions for an abstract Cauchy problem invloving infinite delay, impulsive and nonlocal conditions. The result is shown by means of the infinitesimal operator, semigroup theory, fractional calculus, and Schauder’s fixed point theorem. First, we prove the existence of the mild solution and demonstrate that the Ψ-Caputo fractional system is approximately controllable. Finally, an example is given to analyse the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信