Qian Chen, Peijun Liu, Yanan Fu, Shuoshuo Zhang, Yuquan Zhang, Xiaocong Yuan, C. Min
{"title":"用于产生任意圆柱矢量光束的单层手性元表面","authors":"Qian Chen, Peijun Liu, Yanan Fu, Shuoshuo Zhang, Yuquan Zhang, Xiaocong Yuan, C. Min","doi":"10.3390/photonics11010057","DOIUrl":null,"url":null,"abstract":"The cylindrical vector beam (CVB) has been widely studied and applied in recent years. However, many CVB generation methods suffer from complex systems, and large-size devices are required. Here, we propose a monolayer chiral metasurface composed of spin-sensitive unit cells which can generate different holograms for left- and right-circular polarization based on the combined modulation of geometric phase and detour phase. With a linearly polarized incident beam, the metasurface can generate CVBs with controllable polarization angles and orders, and even more complex vector beams. This work provides a new idea for the design of miniaturized optical devices for generating arbitrary vector beams.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"1 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monolayer Chiral Metasurface for Generation of Arbitrary Cylindrical Vector Beams\",\"authors\":\"Qian Chen, Peijun Liu, Yanan Fu, Shuoshuo Zhang, Yuquan Zhang, Xiaocong Yuan, C. Min\",\"doi\":\"10.3390/photonics11010057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cylindrical vector beam (CVB) has been widely studied and applied in recent years. However, many CVB generation methods suffer from complex systems, and large-size devices are required. Here, we propose a monolayer chiral metasurface composed of spin-sensitive unit cells which can generate different holograms for left- and right-circular polarization based on the combined modulation of geometric phase and detour phase. With a linearly polarized incident beam, the metasurface can generate CVBs with controllable polarization angles and orders, and even more complex vector beams. This work provides a new idea for the design of miniaturized optical devices for generating arbitrary vector beams.\",\"PeriodicalId\":20154,\"journal\":{\"name\":\"Photonics\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/photonics11010057\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010057","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Monolayer Chiral Metasurface for Generation of Arbitrary Cylindrical Vector Beams
The cylindrical vector beam (CVB) has been widely studied and applied in recent years. However, many CVB generation methods suffer from complex systems, and large-size devices are required. Here, we propose a monolayer chiral metasurface composed of spin-sensitive unit cells which can generate different holograms for left- and right-circular polarization based on the combined modulation of geometric phase and detour phase. With a linearly polarized incident beam, the metasurface can generate CVBs with controllable polarization angles and orders, and even more complex vector beams. This work provides a new idea for the design of miniaturized optical devices for generating arbitrary vector beams.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.