非对称离散 Korteweg-de Vries 方程的可积分性和解

Maebel Mesfun, Da-jun Zhang, Song-lin Zhao
{"title":"非对称离散 Korteweg-de Vries 方程的可积分性和解","authors":"Maebel Mesfun, Da-jun Zhang, Song-lin Zhao","doi":"10.1088/1572-9494/ad1b4a","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present Lax pairs and solutions for a nonsymmetric lattice equation, which is a torqued version of the lattice potential Korteweg-de Vries equation. This nonsymmetric equation is special in the sense that it contains only one spacing parameter but consists of two consistent cubes with other integrable lattice equations. Using such a multidimensionally consistent property we are able to derive its two Lax pairs and also construct solutions using Bäcklund transformations.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrability and solutions of a nonsymmetric discrete Korteweg-de Vries equation\",\"authors\":\"Maebel Mesfun, Da-jun Zhang, Song-lin Zhao\",\"doi\":\"10.1088/1572-9494/ad1b4a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present Lax pairs and solutions for a nonsymmetric lattice equation, which is a torqued version of the lattice potential Korteweg-de Vries equation. This nonsymmetric equation is special in the sense that it contains only one spacing parameter but consists of two consistent cubes with other integrable lattice equations. Using such a multidimensionally consistent property we are able to derive its two Lax pairs and also construct solutions using Bäcklund transformations.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad1b4a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad1b4a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了非对称晶格方程的拉克斯对和解,它是晶格势 Korteweg-de Vries 方程的扭转版本。这个非对称方程的特殊之处在于,它只包含一个间距参数,但由两个与其他可积分晶格方程一致的立方体组成。利用这种多维一致的特性,我们能够推导出它的两个拉克斯对,并利用贝克隆变换构建解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrability and solutions of a nonsymmetric discrete Korteweg-de Vries equation
In this paper, we present Lax pairs and solutions for a nonsymmetric lattice equation, which is a torqued version of the lattice potential Korteweg-de Vries equation. This nonsymmetric equation is special in the sense that it contains only one spacing parameter but consists of two consistent cubes with other integrable lattice equations. Using such a multidimensionally consistent property we are able to derive its two Lax pairs and also construct solutions using Bäcklund transformations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信