{"title":"基于晶界形式超薄银和 IZO 层的柔性透明导电电极的研究","authors":"Tae Hoon Park","doi":"10.3365/kjmm.2024.62.1.39","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated a transparent conductive electrode (TCE) that satisfies electrical, optical, and mechanical properties, formed by depositing ultra-thin Ag metal in the form of a random grain boundary with an indium zinc oxide (IZO) layer on a PET substrate. Commonly used ITO electrodes are brittle and difficult to apply to flexible devices. In contrast, IZO-based electrodes are mechanically flexible and can be used as flexible TCE, and have high electrical and optical properties. A 90 nm thick IZO electrode has a transmittance of 90.2% at a wavelength of 460 nm and a sheet resistance of 29.5 ohm/sq. In particular, Ag metal was deposited in the form of an atypical metal island using an RF magnetron sputtering system. At 3 nm there were few metal clusters in the form of islands, and many void channels were formed, resulting in high sheet resistance as well as a decrease in optical transmittance. However, about 5 nm thickness, the number of void channels decreased and the optical path changed, improving the electrical and optical properties. Results showed that the sheet resistance was reduced to 19.8 ohm/sq, and the transmittance was also increased to 91.1%. The mechanical properties were also found to be the same for conventional IZO and Ag/IZO TCE.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":"49 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Flexible Transparent Conductive Electrodes Based on Ultra-Thin Ag in the Form of Grain Boundary with IZO Layer\",\"authors\":\"Tae Hoon Park\",\"doi\":\"10.3365/kjmm.2024.62.1.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigated a transparent conductive electrode (TCE) that satisfies electrical, optical, and mechanical properties, formed by depositing ultra-thin Ag metal in the form of a random grain boundary with an indium zinc oxide (IZO) layer on a PET substrate. Commonly used ITO electrodes are brittle and difficult to apply to flexible devices. In contrast, IZO-based electrodes are mechanically flexible and can be used as flexible TCE, and have high electrical and optical properties. A 90 nm thick IZO electrode has a transmittance of 90.2% at a wavelength of 460 nm and a sheet resistance of 29.5 ohm/sq. In particular, Ag metal was deposited in the form of an atypical metal island using an RF magnetron sputtering system. At 3 nm there were few metal clusters in the form of islands, and many void channels were formed, resulting in high sheet resistance as well as a decrease in optical transmittance. However, about 5 nm thickness, the number of void channels decreased and the optical path changed, improving the electrical and optical properties. Results showed that the sheet resistance was reduced to 19.8 ohm/sq, and the transmittance was also increased to 91.1%. The mechanical properties were also found to be the same for conventional IZO and Ag/IZO TCE.\",\"PeriodicalId\":17894,\"journal\":{\"name\":\"Korean Journal of Metals and Materials\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Metals and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3365/kjmm.2024.62.1.39\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.1.39","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on Flexible Transparent Conductive Electrodes Based on Ultra-Thin Ag in the Form of Grain Boundary with IZO Layer
In this paper, we investigated a transparent conductive electrode (TCE) that satisfies electrical, optical, and mechanical properties, formed by depositing ultra-thin Ag metal in the form of a random grain boundary with an indium zinc oxide (IZO) layer on a PET substrate. Commonly used ITO electrodes are brittle and difficult to apply to flexible devices. In contrast, IZO-based electrodes are mechanically flexible and can be used as flexible TCE, and have high electrical and optical properties. A 90 nm thick IZO electrode has a transmittance of 90.2% at a wavelength of 460 nm and a sheet resistance of 29.5 ohm/sq. In particular, Ag metal was deposited in the form of an atypical metal island using an RF magnetron sputtering system. At 3 nm there were few metal clusters in the form of islands, and many void channels were formed, resulting in high sheet resistance as well as a decrease in optical transmittance. However, about 5 nm thickness, the number of void channels decreased and the optical path changed, improving the electrical and optical properties. Results showed that the sheet resistance was reduced to 19.8 ohm/sq, and the transmittance was also increased to 91.1%. The mechanical properties were also found to be the same for conventional IZO and Ag/IZO TCE.
期刊介绍:
The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.