六种全氟辛烷磺酸与人类血清白蛋白的结合亲和力和机理:多光谱、DFT 和分子动力学方法的启示

Toxics Pub Date : 2024-01-05 DOI:10.3390/toxics12010043
Mingguo Peng, Yang Xu, Yao Wu, Xuewen Cai, Weihua Zhang, Lu Zheng, Erdeng Du, Jiajun Fu
{"title":"六种全氟辛烷磺酸与人类血清白蛋白的结合亲和力和机理:多光谱、DFT 和分子动力学方法的启示","authors":"Mingguo Peng, Yang Xu, Yao Wu, Xuewen Cai, Weihua Zhang, Lu Zheng, Erdeng Du, Jiajun Fu","doi":"10.3390/toxics12010043","DOIUrl":null,"url":null,"abstract":"Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: “Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol−1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol−1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol−1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol−1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol−1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol−1)”. Thermodynamic analysis suggests that PFNA and PFO3DA’s interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA’s interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA–PFAS binding site is in the HSA structure’s subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (−38.83 kcal/mol) is fund in the HSA–PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA–PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA–PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":"10 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches\",\"authors\":\"Mingguo Peng, Yang Xu, Yao Wu, Xuewen Cai, Weihua Zhang, Lu Zheng, Erdeng Du, Jiajun Fu\",\"doi\":\"10.3390/toxics12010043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: “Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol−1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol−1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol−1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol−1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol−1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol−1)”. Thermodynamic analysis suggests that PFNA and PFO3DA’s interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA’s interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA–PFAS binding site is in the HSA structure’s subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (−38.83 kcal/mol) is fund in the HSA–PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA–PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA–PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.\",\"PeriodicalId\":508978,\"journal\":{\"name\":\"Toxics\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/toxics12010043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/toxics12010043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质(PFAS)会在人体内进行生物累积,带来潜在的健康风险和细胞毒性。它们的迁移机制以及与组织和循环系统的相互作用需要进一步研究。本研究采用多光谱分析、DFT 和分子动力学方法研究了六种 PFAS 与人类血清白蛋白(HSA)的相互作用机制。多光谱分析显示,全氟壬酸(PFNA)与 HSA 的结合能力最强。结合常数(298 K)的顺序如下:"全氟壬酸(PFNA,7.81 × 106 L-mol-1)>全氟-2,5-二甲基-3,6-二氧杂壬酸(HFPO-TA,3.70 × 106 L-mol-1)>全氟辛酸(PFOA,2.27 × 105 L-mol-1) > 全氟-3,6,9-三氧杂十一烷酸 (PFO3DA, 1.59 × 105 L-mol-1) > 全氟庚酸 (PFHpA, 4.53 × 103 L-mol-1) > 十二氟辛二酸 (DFSA, 1.52 × 103 L-mol-1)"。热力学分析表明,PFNA 和 PFO3DA 与 HSA 的相互作用是放热的,主要由氢键或范德华相互作用驱动。而 PFHpA、DFSA、PFOA 和 HFPO-TA 与 HSA 的相互作用则是主要由疏水相互作用驱动的内热过程。竞争性探针结果显示,HSA-PFAS 的主要结合位点位于 HSA 结构的子域 IIA 中。这些发现也与分子对接的结果一致。分子动力学模拟(MD)分析进一步表明,HSA-PFNA 复合物的结合能最低(-38.83 kcal/mol),这表明 PFNA 更容易与 HSA 结合。能量分解分析还表明,范德华和静电相互作用是 HSA-PFAS 复合物的主要作用力。相关分析表明,与静电分布相关的 DFT 量子化学描述符以及 ESP 和 ALIE 等特征在表征 HSA-PFAS 结合方面更具代表性。这项研究揭示了 HSA 与 PFAS 之间的相互作用。它为针对 PFAS 的健康风险评估和控制策略提供了指导,是进一步开展公共健康研究的重要起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches
Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: “Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol−1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol−1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol−1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol−1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol−1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol−1)”. Thermodynamic analysis suggests that PFNA and PFO3DA’s interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA’s interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA–PFAS binding site is in the HSA structure’s subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (−38.83 kcal/mol) is fund in the HSA–PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA–PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA–PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信