{"title":"往复流阻尼轴向传导的实验和计算证据","authors":"I. Mitra, Indranil Ghosh","doi":"10.1115/1.4064446","DOIUrl":null,"url":null,"abstract":"\n Axial conduction is a crucial performance deteriorating factor in miniaturized heat transfer devices, primarily due to the low fluid flow rates, high solid cross-sectional to free-flow area ratio, and use of high thermal conductivity materials. These causative factors, inherent to micro-scale systems, should be such that the axial conduction is minimum. The reciprocating flow of the convective fluid (instead of steady unidirectional flow) is proposed per se as an alternative, which directly alters the solid temperature profile, the root cause of axial conduction. An experimental setup is built as a proof of the concept. In the test rig, a double-acting reciprocating pump generates a fully reversing periodic flow of air through a flow channel carved into a steel block embedded with a heater. The experimental temperature profile in the solid at the cyclic steady state is bell-shaped, indicating a virtual adiabatic plane capable of restricting axial heat transfer. The experimental results are verified taking the help of an independent finite-element-based numerical analysis. Similarly, the non-dimensional interfacial flux ratio (?_0 ), integrally related to axial conduction, for unidirectional and reciprocating flow is significantly different. This ratio in the vicinity of the inlet is ~53% less with the reciprocating compared to the equivalent unidirectional flow. The optimal thermal performance with the reciprocating flow is correlated through a critical Strouhal number expression, Sr ≤ (pDh)/L. In thermal management applications employing reciprocating flow, the limiting relation can be used to determine flow parameters and optimum geometry design.","PeriodicalId":510895,"journal":{"name":"ASME journal of heat and mass transfer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Computational Evidence of Damped Axial Conduction with Reciprocating Flow\",\"authors\":\"I. Mitra, Indranil Ghosh\",\"doi\":\"10.1115/1.4064446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Axial conduction is a crucial performance deteriorating factor in miniaturized heat transfer devices, primarily due to the low fluid flow rates, high solid cross-sectional to free-flow area ratio, and use of high thermal conductivity materials. These causative factors, inherent to micro-scale systems, should be such that the axial conduction is minimum. The reciprocating flow of the convective fluid (instead of steady unidirectional flow) is proposed per se as an alternative, which directly alters the solid temperature profile, the root cause of axial conduction. An experimental setup is built as a proof of the concept. In the test rig, a double-acting reciprocating pump generates a fully reversing periodic flow of air through a flow channel carved into a steel block embedded with a heater. The experimental temperature profile in the solid at the cyclic steady state is bell-shaped, indicating a virtual adiabatic plane capable of restricting axial heat transfer. The experimental results are verified taking the help of an independent finite-element-based numerical analysis. Similarly, the non-dimensional interfacial flux ratio (?_0 ), integrally related to axial conduction, for unidirectional and reciprocating flow is significantly different. This ratio in the vicinity of the inlet is ~53% less with the reciprocating compared to the equivalent unidirectional flow. The optimal thermal performance with the reciprocating flow is correlated through a critical Strouhal number expression, Sr ≤ (pDh)/L. In thermal management applications employing reciprocating flow, the limiting relation can be used to determine flow parameters and optimum geometry design.\",\"PeriodicalId\":510895,\"journal\":{\"name\":\"ASME journal of heat and mass transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME journal of heat and mass transfer\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME journal of heat and mass transfer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1115/1.4064446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
轴向传导是微型传热设备性能下降的一个关键因素,这主要是由于流体流速低、固体横截面与自由流动面积比高以及使用了高导热材料。这些微型系统固有的致病因素应使轴向传导最小。对流流体的往复流动(而不是稳定的单向流动)本身就是一种替代方案,它可以直接改变固体温度曲线,而这正是轴向传导的根本原因。为证明这一概念,我们建立了一个实验装置。在试验装置中,双作用往复泵产生完全反向的周期性气流,通过在嵌入加热器的钢块上开凿的流道。在循环稳定状态下,固体中的实验温度曲线呈钟形,表明虚拟绝热面能够限制轴向传热。实验结果在独立的有限元数值分析的帮助下得到了验证。同样,单向流和往复流的非维度界面通量比 (?_0 ) 与轴向传导密切相关,两者之间存在显著差异。与等效的单向流相比,往复流在入口附近的这一比率要小 53%。往复流的最佳热性能与临界斯特劳哈尔数表达式 Sr ≤ (pDh)/L 有关。在采用往复流的热管理应用中,可利用该极限关系确定流动参数和最佳几何设计。
Experimental and Computational Evidence of Damped Axial Conduction with Reciprocating Flow
Axial conduction is a crucial performance deteriorating factor in miniaturized heat transfer devices, primarily due to the low fluid flow rates, high solid cross-sectional to free-flow area ratio, and use of high thermal conductivity materials. These causative factors, inherent to micro-scale systems, should be such that the axial conduction is minimum. The reciprocating flow of the convective fluid (instead of steady unidirectional flow) is proposed per se as an alternative, which directly alters the solid temperature profile, the root cause of axial conduction. An experimental setup is built as a proof of the concept. In the test rig, a double-acting reciprocating pump generates a fully reversing periodic flow of air through a flow channel carved into a steel block embedded with a heater. The experimental temperature profile in the solid at the cyclic steady state is bell-shaped, indicating a virtual adiabatic plane capable of restricting axial heat transfer. The experimental results are verified taking the help of an independent finite-element-based numerical analysis. Similarly, the non-dimensional interfacial flux ratio (?_0 ), integrally related to axial conduction, for unidirectional and reciprocating flow is significantly different. This ratio in the vicinity of the inlet is ~53% less with the reciprocating compared to the equivalent unidirectional flow. The optimal thermal performance with the reciprocating flow is correlated through a critical Strouhal number expression, Sr ≤ (pDh)/L. In thermal management applications employing reciprocating flow, the limiting relation can be used to determine flow parameters and optimum geometry design.