{"title":"零循环和卡莱-奥吉索自定态","authors":"Gilberto Bini, Robert Laterveer","doi":"10.1007/s11565-023-00483-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cayley and Oguiso have constructed certain quartic K3 surfaces <i>S</i>, with automorphisms <i>g</i> of infinite order. We show that when <i>g</i> is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of <i>S</i>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 2","pages":"461 - 477"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-023-00483-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Zero-cycles and the Cayley–Oguiso automorphism\",\"authors\":\"Gilberto Bini, Robert Laterveer\",\"doi\":\"10.1007/s11565-023-00483-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cayley and Oguiso have constructed certain quartic K3 surfaces <i>S</i>, with automorphisms <i>g</i> of infinite order. We show that when <i>g</i> is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of <i>S</i>.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 2\",\"pages\":\"461 - 477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-023-00483-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-023-00483-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-023-00483-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
Cayley 和 Oguiso 构造了某些具有无穷阶自形化 g 的四元 K3 曲面 S。我们证明,当 g 是交映(或反交映)时,它在 S 的零周期周群的零度部分上起着同一(或减同一)的作用。
Cayley and Oguiso have constructed certain quartic K3 surfaces S, with automorphisms g of infinite order. We show that when g is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of S.
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.