零循环和卡莱-奥吉索自定态

Q2 Mathematics
Gilberto Bini, Robert Laterveer
{"title":"零循环和卡莱-奥吉索自定态","authors":"Gilberto Bini,&nbsp;Robert Laterveer","doi":"10.1007/s11565-023-00483-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cayley and Oguiso have constructed certain quartic K3 surfaces <i>S</i>, with automorphisms <i>g</i> of infinite order. We show that when <i>g</i> is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of <i>S</i>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 2","pages":"461 - 477"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-023-00483-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Zero-cycles and the Cayley–Oguiso automorphism\",\"authors\":\"Gilberto Bini,&nbsp;Robert Laterveer\",\"doi\":\"10.1007/s11565-023-00483-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cayley and Oguiso have constructed certain quartic K3 surfaces <i>S</i>, with automorphisms <i>g</i> of infinite order. We show that when <i>g</i> is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of <i>S</i>.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 2\",\"pages\":\"461 - 477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-023-00483-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-023-00483-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-023-00483-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

Cayley 和 Oguiso 构造了某些具有无穷阶自形化 g 的四元 K3 曲面 S。我们证明,当 g 是交映(或反交映)时,它在 S 的零周期周群的零度部分上起着同一(或减同一)的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-cycles and the Cayley–Oguiso automorphism

Cayley and Oguiso have constructed certain quartic K3 surfaces S, with automorphisms g of infinite order. We show that when g is symplectic (resp. anti-symplectic), it acts as the identity (resp. minus the identity) on the degree zero part of the Chow group of zero-cycles of S.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信