极端随机森林

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY
Nicola Gnecco, Edossa Merga Terefe, Sebastian Engelke
{"title":"极端随机森林","authors":"Nicola Gnecco, Edossa Merga Terefe, Sebastian Engelke","doi":"10.1080/01621459.2023.2300522","DOIUrl":null,"url":null,"abstract":"Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Random Forests\",\"authors\":\"Nicola Gnecco, Edossa Merga Terefe, Sebastian Engelke\",\"doi\":\"10.1080/01621459.2023.2300522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can...\",\"PeriodicalId\":17227,\"journal\":{\"name\":\"Journal of the American Statistical Association\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Statistical Association\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01621459.2023.2300522\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2023.2300522","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

当所关注的量值是极值,只有少数或没有训练数据点超过该量值时,量值回归的经典方法就会失效。极值理论的渐近结果可以...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal Random Forests
Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信