Yingying Lin, Shirley Chiu Wai Chan, Ho Yin Chung, Kam Ho Lee, Peng Cao
{"title":"轴性脊柱关节炎核磁共振脊柱炎症深度神经网络。","authors":"Yingying Lin, Shirley Chiu Wai Chan, Ho Yin Chung, Kam Ho Lee, Peng Cao","doi":"10.1007/s00586-023-08099-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop a deep neural network for the detection of inflammatory spine in short tau inversion recovery (STIR) sequence of magnetic resonance imaging (MRI) on patients with axial spondyloarthritis (axSpA).</p><p><strong>Methods: </strong>A total 330 patients with axSpA were recruited. STIR MRI of the whole spine and clinical data were obtained. Regions of interests (ROIs) were drawn outlining the active inflammatory lesion consisting of bone marrow edema (BME). Spinal inflammation was defined by the presence of an active inflammatory lesion on the STIR sequence. The 'fake-color' images were constructed. Images from 270 and 60 patients were randomly separated into the training/validation and testing sets, respectively. Deep neural network was developed using attention UNet. The neural network performance was compared to the image interpretation by a radiologist blinded to the ground truth.</p><p><strong>Results: </strong>Active inflammatory lesions were identified in 2891 MR images and were absent in 14,590 MR images. The sensitivity and specificity of the derived deep neural network were 0.80 ± 0.03 and 0.88 ± 0.02, respectively. The Dice coefficient of the true positive lesions was 0.55 ± 0.02. The area under the curve of the receiver operating characteristic (AUC-ROC) curve of the deep neural network was 0.87 ± 0.02. The performance of the developed deep neural network was comparable to the interpretation of a radiologist with similar sensitivity and specificity.</p><p><strong>Conclusion: </strong>The developed deep neural network showed similar sensitivity and specificity to a radiologist with four years of experience. The results indicated that the network can provide a reliable and straightforward way of interpreting spinal MRI. The use of this deep neural network has the potential to expand the use of spinal MRI in managing axSpA.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":"4125-4134"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep neural network for MRI spinal inflammation in axial spondyloarthritis.\",\"authors\":\"Yingying Lin, Shirley Chiu Wai Chan, Ho Yin Chung, Kam Ho Lee, Peng Cao\",\"doi\":\"10.1007/s00586-023-08099-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop a deep neural network for the detection of inflammatory spine in short tau inversion recovery (STIR) sequence of magnetic resonance imaging (MRI) on patients with axial spondyloarthritis (axSpA).</p><p><strong>Methods: </strong>A total 330 patients with axSpA were recruited. STIR MRI of the whole spine and clinical data were obtained. Regions of interests (ROIs) were drawn outlining the active inflammatory lesion consisting of bone marrow edema (BME). Spinal inflammation was defined by the presence of an active inflammatory lesion on the STIR sequence. The 'fake-color' images were constructed. Images from 270 and 60 patients were randomly separated into the training/validation and testing sets, respectively. Deep neural network was developed using attention UNet. The neural network performance was compared to the image interpretation by a radiologist blinded to the ground truth.</p><p><strong>Results: </strong>Active inflammatory lesions were identified in 2891 MR images and were absent in 14,590 MR images. The sensitivity and specificity of the derived deep neural network were 0.80 ± 0.03 and 0.88 ± 0.02, respectively. The Dice coefficient of the true positive lesions was 0.55 ± 0.02. The area under the curve of the receiver operating characteristic (AUC-ROC) curve of the deep neural network was 0.87 ± 0.02. The performance of the developed deep neural network was comparable to the interpretation of a radiologist with similar sensitivity and specificity.</p><p><strong>Conclusion: </strong>The developed deep neural network showed similar sensitivity and specificity to a radiologist with four years of experience. The results indicated that the network can provide a reliable and straightforward way of interpreting spinal MRI. The use of this deep neural network has the potential to expand the use of spinal MRI in managing axSpA.</p>\",\"PeriodicalId\":12323,\"journal\":{\"name\":\"European Spine Journal\",\"volume\":\" \",\"pages\":\"4125-4134\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Spine Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00586-023-08099-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-023-08099-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A deep neural network for MRI spinal inflammation in axial spondyloarthritis.
Objective: To develop a deep neural network for the detection of inflammatory spine in short tau inversion recovery (STIR) sequence of magnetic resonance imaging (MRI) on patients with axial spondyloarthritis (axSpA).
Methods: A total 330 patients with axSpA were recruited. STIR MRI of the whole spine and clinical data were obtained. Regions of interests (ROIs) were drawn outlining the active inflammatory lesion consisting of bone marrow edema (BME). Spinal inflammation was defined by the presence of an active inflammatory lesion on the STIR sequence. The 'fake-color' images were constructed. Images from 270 and 60 patients were randomly separated into the training/validation and testing sets, respectively. Deep neural network was developed using attention UNet. The neural network performance was compared to the image interpretation by a radiologist blinded to the ground truth.
Results: Active inflammatory lesions were identified in 2891 MR images and were absent in 14,590 MR images. The sensitivity and specificity of the derived deep neural network were 0.80 ± 0.03 and 0.88 ± 0.02, respectively. The Dice coefficient of the true positive lesions was 0.55 ± 0.02. The area under the curve of the receiver operating characteristic (AUC-ROC) curve of the deep neural network was 0.87 ± 0.02. The performance of the developed deep neural network was comparable to the interpretation of a radiologist with similar sensitivity and specificity.
Conclusion: The developed deep neural network showed similar sensitivity and specificity to a radiologist with four years of experience. The results indicated that the network can provide a reliable and straightforward way of interpreting spinal MRI. The use of this deep neural network has the potential to expand the use of spinal MRI in managing axSpA.
期刊介绍:
"European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts.
Official publication of EUROSPINE, The Spine Society of Europe