先进的聚合物基表面活性剂可提高强化采油工艺的热稳定性和盐度稳定性

IF 1.6 4区 工程技术 Q3 CHEMISTRY, APPLIED
Mohammad Soleimani, Ashkan Abdalisousan, Abbas Khaksar Manshad, Vali Ahmad Sajadiyan
{"title":"先进的聚合物基表面活性剂可提高强化采油工艺的热稳定性和盐度稳定性","authors":"Mohammad Soleimani,&nbsp;Ashkan Abdalisousan,&nbsp;Abbas Khaksar Manshad,&nbsp;Vali Ahmad Sajadiyan","doi":"10.1002/jsde.12729","DOIUrl":null,"url":null,"abstract":"<p>Enhancing oil recovery through surfactants has proven to be a successful strategy in recent times. However, traditional surfactants have their limitations, particularly in terms of stability under high temperatures and salinity levels. This study delved into a groundbreaking macromolecular polymeric surfactant, S-AV, which holds the unique ability to transform rock surface characteristics, effectively stripping away residual oil while maintaining resilience against elevated temperatures and salinity. S-AV was synthesized through a free-radical copolymerization process, incorporating benzyl, perfluoroalkyl, alkyl-, benzyl-, ethylene glycol, and amide-alkyl-sulfonate groups, ultimately yielding a comb-like molecular structure. S-AV demonstrated exceptional prowess, swiftly reducing the underwater oil contact angle to 53.4° in just 48 h. This synthesized surfactant also retained its phase stability up to salinity levels of 36,000 ppm, with temperature having no disruptive impact on its phase stability performance. Furthermore, S-AV showcased remarkable viscosity reduction in conditions of high temperature and salinity. The core flooding experiments underscored the potential of S-AV, as its injection led to a significant oil recovery rate of up to 83%. These findings position S-AV as a promising candidate for practical enhanced oil recovery applications.</p>","PeriodicalId":17083,"journal":{"name":"Journal of Surfactants and Detergents","volume":"27 3","pages":"421-432"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced polymer-based surfactant for improved heat and salinity stability in enhanced oil recovery processes\",\"authors\":\"Mohammad Soleimani,&nbsp;Ashkan Abdalisousan,&nbsp;Abbas Khaksar Manshad,&nbsp;Vali Ahmad Sajadiyan\",\"doi\":\"10.1002/jsde.12729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancing oil recovery through surfactants has proven to be a successful strategy in recent times. However, traditional surfactants have their limitations, particularly in terms of stability under high temperatures and salinity levels. This study delved into a groundbreaking macromolecular polymeric surfactant, S-AV, which holds the unique ability to transform rock surface characteristics, effectively stripping away residual oil while maintaining resilience against elevated temperatures and salinity. S-AV was synthesized through a free-radical copolymerization process, incorporating benzyl, perfluoroalkyl, alkyl-, benzyl-, ethylene glycol, and amide-alkyl-sulfonate groups, ultimately yielding a comb-like molecular structure. S-AV demonstrated exceptional prowess, swiftly reducing the underwater oil contact angle to 53.4° in just 48 h. This synthesized surfactant also retained its phase stability up to salinity levels of 36,000 ppm, with temperature having no disruptive impact on its phase stability performance. Furthermore, S-AV showcased remarkable viscosity reduction in conditions of high temperature and salinity. The core flooding experiments underscored the potential of S-AV, as its injection led to a significant oil recovery rate of up to 83%. These findings position S-AV as a promising candidate for practical enhanced oil recovery applications.</p>\",\"PeriodicalId\":17083,\"journal\":{\"name\":\"Journal of Surfactants and Detergents\",\"volume\":\"27 3\",\"pages\":\"421-432\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surfactants and Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12729\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surfactants and Detergents","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsde.12729","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

近年来,通过表面活性剂提高石油采收率已被证明是一项成功的策略。然而,传统的表面活性剂有其局限性,尤其是在高温和盐度下的稳定性方面。本研究深入探讨了一种突破性的高分子聚合物表面活性剂 S-AV,它具有改变岩石表面特征的独特能力,能有效剥离残余石油,同时保持对高温和盐度的适应性。S-AV 是通过自由基共聚工艺合成的,其中包含苄基、全氟烷基、烷基、苄基、乙二醇和酰胺基烷基磺酸基团,最终形成梳状分子结构。这种合成表面活性剂还能在 36,000 ppm 的盐度水平下保持相稳定性,温度对其相稳定性能没有破坏性影响。此外,S-AV 还能在高温和高盐度条件下显著降低粘度。岩心淹没实验强调了 S-AV 的潜力,因为注入 S-AV 后,石油采收率高达 83%。这些研究结果表明,S-AV 在实际提高石油采收率的应用中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced polymer-based surfactant for improved heat and salinity stability in enhanced oil recovery processes

Enhancing oil recovery through surfactants has proven to be a successful strategy in recent times. However, traditional surfactants have their limitations, particularly in terms of stability under high temperatures and salinity levels. This study delved into a groundbreaking macromolecular polymeric surfactant, S-AV, which holds the unique ability to transform rock surface characteristics, effectively stripping away residual oil while maintaining resilience against elevated temperatures and salinity. S-AV was synthesized through a free-radical copolymerization process, incorporating benzyl, perfluoroalkyl, alkyl-, benzyl-, ethylene glycol, and amide-alkyl-sulfonate groups, ultimately yielding a comb-like molecular structure. S-AV demonstrated exceptional prowess, swiftly reducing the underwater oil contact angle to 53.4° in just 48 h. This synthesized surfactant also retained its phase stability up to salinity levels of 36,000 ppm, with temperature having no disruptive impact on its phase stability performance. Furthermore, S-AV showcased remarkable viscosity reduction in conditions of high temperature and salinity. The core flooding experiments underscored the potential of S-AV, as its injection led to a significant oil recovery rate of up to 83%. These findings position S-AV as a promising candidate for practical enhanced oil recovery applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Surfactants and Detergents
Journal of Surfactants and Detergents 工程技术-工程:化工
CiteScore
3.80
自引率
6.20%
发文量
68
审稿时长
4 months
期刊介绍: Journal of Surfactants and Detergents, a journal of the American Oil Chemists’ Society (AOCS) publishes scientific contributions in the surfactants and detergents area. This includes the basic and applied science of petrochemical and oleochemical surfactants, the development and performance of surfactants in all applications, as well as the development and manufacture of detergent ingredients and their formulation into finished products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信