{"title":"聚酰胺 66 和聚酰胺 66-玻璃纤维增强型的高应变速率机械特性","authors":"T. Gómez-del Río, A. Ruiz","doi":"10.1007/s11029-023-10167-x","DOIUrl":null,"url":null,"abstract":"<p>The effect of glass fiber-reinforcement polymer Polyamide 66 on the uniaxial compressive mechanical response was measured over a wide strain-rate range from quasi-static tests with strain rate of 5×10<sup>–3</sup> s<sup>–1</sup> to impact tests with strain rate of 2×10<sup>3</sup> s<sup>–1</sup>. Dynamic compressive load was applied using a split Hopkinson pressure bar, whereas an electromechanical testing machine was used to carry out quasi-static experiments in displacement control to determine strain-rate sensitivity. The results demonstrate that strain rate significantly influences yield stress, post-yield behavior, and ductility of the two polymers under study. The yield stress experimental data are consistent with thermally activated processes.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Strain Rate Mechanical Behavior of Polyamide 66 and Polyamide 66-Glass Fiber Reinforced\",\"authors\":\"T. Gómez-del Río, A. Ruiz\",\"doi\":\"10.1007/s11029-023-10167-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of glass fiber-reinforcement polymer Polyamide 66 on the uniaxial compressive mechanical response was measured over a wide strain-rate range from quasi-static tests with strain rate of 5×10<sup>–3</sup> s<sup>–1</sup> to impact tests with strain rate of 2×10<sup>3</sup> s<sup>–1</sup>. Dynamic compressive load was applied using a split Hopkinson pressure bar, whereas an electromechanical testing machine was used to carry out quasi-static experiments in displacement control to determine strain-rate sensitivity. The results demonstrate that strain rate significantly influences yield stress, post-yield behavior, and ductility of the two polymers under study. The yield stress experimental data are consistent with thermally activated processes.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-023-10167-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-023-10167-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
High Strain Rate Mechanical Behavior of Polyamide 66 and Polyamide 66-Glass Fiber Reinforced
The effect of glass fiber-reinforcement polymer Polyamide 66 on the uniaxial compressive mechanical response was measured over a wide strain-rate range from quasi-static tests with strain rate of 5×10–3 s–1 to impact tests with strain rate of 2×103 s–1. Dynamic compressive load was applied using a split Hopkinson pressure bar, whereas an electromechanical testing machine was used to carry out quasi-static experiments in displacement control to determine strain-rate sensitivity. The results demonstrate that strain rate significantly influences yield stress, post-yield behavior, and ductility of the two polymers under study. The yield stress experimental data are consistent with thermally activated processes.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.