Jiaojiao Wu, Zhigang Cai, Fan Yang, Jun Li, Francois Trahay, Zheng Yang, Chao Wang, Jianwei Liao
{"title":"轮询净化,平衡高密度固态硬盘的 I/O 延迟和数据安全","authors":"Jiaojiao Wu, Zhigang Cai, Fan Yang, Jun Li, Francois Trahay, Zheng Yang, Chao Wang, Jianwei Liao","doi":"10.1145/3639826","DOIUrl":null,"url":null,"abstract":"<p>Sanitization is an effective approach for ensuring data security through scrubbing invalid but sensitive data pages, with the cost of impacts on storage performance due to moving out valid pages from the sanitization-required wordline, which is a logical read/write unit and consists of multiple pages in high-density SSDs. To minimize the impacts on I/O latency and data security, this paper proposes a polling-based scheduling approach for data sanitization in high-density SSDs. Our method polls a specific SSD channel for completing data sanitization at the block granularity, meanwhile other channels can still service I/O requests. Furthermore, our method assigns a low priority to the blocks that are more likely to have future <i>adjacent page</i> invalidations inside sanitization-required wordlines, while selecting the sanitization block, to minimize the negative impacts of moving valid pages. Through a series of emulation experiments on several disk traces of real-world applications, we show that our proposal can decrease the negative effects of data sanitization in terms of the risk-performance index, which is a united time metric of I/O responsiveness and the unsafe time interval, by <monospace>16.34%</monospace> on average, compared to related sanitization methods.</p>","PeriodicalId":49113,"journal":{"name":"ACM Transactions on Storage","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polling Sanitization to Balance I/O Latency and Data Security of High-density SSDs\",\"authors\":\"Jiaojiao Wu, Zhigang Cai, Fan Yang, Jun Li, Francois Trahay, Zheng Yang, Chao Wang, Jianwei Liao\",\"doi\":\"10.1145/3639826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sanitization is an effective approach for ensuring data security through scrubbing invalid but sensitive data pages, with the cost of impacts on storage performance due to moving out valid pages from the sanitization-required wordline, which is a logical read/write unit and consists of multiple pages in high-density SSDs. To minimize the impacts on I/O latency and data security, this paper proposes a polling-based scheduling approach for data sanitization in high-density SSDs. Our method polls a specific SSD channel for completing data sanitization at the block granularity, meanwhile other channels can still service I/O requests. Furthermore, our method assigns a low priority to the blocks that are more likely to have future <i>adjacent page</i> invalidations inside sanitization-required wordlines, while selecting the sanitization block, to minimize the negative impacts of moving valid pages. Through a series of emulation experiments on several disk traces of real-world applications, we show that our proposal can decrease the negative effects of data sanitization in terms of the risk-performance index, which is a united time metric of I/O responsiveness and the unsafe time interval, by <monospace>16.34%</monospace> on average, compared to related sanitization methods.</p>\",\"PeriodicalId\":49113,\"journal\":{\"name\":\"ACM Transactions on Storage\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639826\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639826","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Polling Sanitization to Balance I/O Latency and Data Security of High-density SSDs
Sanitization is an effective approach for ensuring data security through scrubbing invalid but sensitive data pages, with the cost of impacts on storage performance due to moving out valid pages from the sanitization-required wordline, which is a logical read/write unit and consists of multiple pages in high-density SSDs. To minimize the impacts on I/O latency and data security, this paper proposes a polling-based scheduling approach for data sanitization in high-density SSDs. Our method polls a specific SSD channel for completing data sanitization at the block granularity, meanwhile other channels can still service I/O requests. Furthermore, our method assigns a low priority to the blocks that are more likely to have future adjacent page invalidations inside sanitization-required wordlines, while selecting the sanitization block, to minimize the negative impacts of moving valid pages. Through a series of emulation experiments on several disk traces of real-world applications, we show that our proposal can decrease the negative effects of data sanitization in terms of the risk-performance index, which is a united time metric of I/O responsiveness and the unsafe time interval, by 16.34% on average, compared to related sanitization methods.
期刊介绍:
The ACM Transactions on Storage (TOS) is a new journal with an intent to publish original archival papers in the area of storage and closely related disciplines. Articles that appear in TOS will tend either to present new techniques and concepts or to report novel experiences and experiments with practical systems. Storage is a broad and multidisciplinary area that comprises of network protocols, resource management, data backup, replication, recovery, devices, security, and theory of data coding, densities, and low-power. Potential synergies among these fields are expected to open up new research directions.