利用全息技术校准 SKA-Low 原型站

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS
Radio Science Pub Date : 2024-01-01 DOI:10.1029/2023RS007847
Jishnu N. Thekkeppattu;Randall B. Wayth;Marcin Sokołowski
{"title":"利用全息技术校准 SKA-Low 原型站","authors":"Jishnu N. Thekkeppattu;Randall B. Wayth;Marcin Sokołowski","doi":"10.1029/2023RS007847","DOIUrl":null,"url":null,"abstract":"Performance of digitally beamformed phased arrays relies on accurate calibration of the array by obtaining gains of each antenna in the array. The stations of the Square Kilometer Array-Low (SKA-Low) are such digital arrays, where the station calibration is currently performed using conventional interferometric techniques. An alternative calibration technique similar to holography of dish based telescopes has been suggested in the past. In this paper, we develop a novel mathematical framework for holography employing tensors, which are multi-way data structures. Self-holography using a reference beam formed with the station under test itself and cross-holography using a different station to obtain the reference beam are unified under the same formalism. Besides, the relation between the two apparently distinct holographic approaches in the literature for phased arrays is shown, and we show that under certain conditions the two methods yield the same results. We test the various holographic techniques on an SKA-Low prototype station Aperture Array Verification System 2 (AAVS2) with the Sun as the calibrator. We perform self-holography of AAVS2 and cross-holography with simultaneous observations carried out with another station Engineering Development Array 2. We find the results from the holographic techniques to be consistent among themselves as well as with a more conventional calibration technique.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 1","pages":"1-14"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of an SKA-low prototype station using holographic techniques\",\"authors\":\"Jishnu N. Thekkeppattu;Randall B. Wayth;Marcin Sokołowski\",\"doi\":\"10.1029/2023RS007847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance of digitally beamformed phased arrays relies on accurate calibration of the array by obtaining gains of each antenna in the array. The stations of the Square Kilometer Array-Low (SKA-Low) are such digital arrays, where the station calibration is currently performed using conventional interferometric techniques. An alternative calibration technique similar to holography of dish based telescopes has been suggested in the past. In this paper, we develop a novel mathematical framework for holography employing tensors, which are multi-way data structures. Self-holography using a reference beam formed with the station under test itself and cross-holography using a different station to obtain the reference beam are unified under the same formalism. Besides, the relation between the two apparently distinct holographic approaches in the literature for phased arrays is shown, and we show that under certain conditions the two methods yield the same results. We test the various holographic techniques on an SKA-Low prototype station Aperture Array Verification System 2 (AAVS2) with the Sun as the calibrator. We perform self-holography of AAVS2 and cross-holography with simultaneous observations carried out with another station Engineering Development Array 2. We find the results from the holographic techniques to be consistent among themselves as well as with a more conventional calibration technique.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10422941/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10422941/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

数字波束成形相控阵的性能取决于通过获取阵列中每个天线的增益对阵列进行精确校准。平方公里阵列-低(SKA-Low)的台站就是这样的数字阵列,目前使用传统的干涉测量技术进行台站校准。过去曾提出过一种类似于碟形望远镜全息技术的替代校准技术。在本文中,我们利用张量这种多向数据结构,为全息技术开发了一个新颖的数学框架。利用被测站自身形成的参考光束进行的自全息和利用不同站获得参考光束进行的交叉全息被统一在同一形式主义下。此外,我们还展示了相控阵文献中两种看似不同的全息方法之间的关系,并证明在某些条件下,这两种方法会产生相同的结果。我们在以太阳为校准器的 SKA-Low 原型站孔径阵列验证系统 2(AAVS2)上测试了各种全息技术。我们对 AAVS2 进行了自全息,并与另一个站工程开发阵列 2 同时进行了交叉全息观测。我们发现全息技术得出的结果相互一致,也与更传统的校准技术一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of an SKA-low prototype station using holographic techniques
Performance of digitally beamformed phased arrays relies on accurate calibration of the array by obtaining gains of each antenna in the array. The stations of the Square Kilometer Array-Low (SKA-Low) are such digital arrays, where the station calibration is currently performed using conventional interferometric techniques. An alternative calibration technique similar to holography of dish based telescopes has been suggested in the past. In this paper, we develop a novel mathematical framework for holography employing tensors, which are multi-way data structures. Self-holography using a reference beam formed with the station under test itself and cross-holography using a different station to obtain the reference beam are unified under the same formalism. Besides, the relation between the two apparently distinct holographic approaches in the literature for phased arrays is shown, and we show that under certain conditions the two methods yield the same results. We test the various holographic techniques on an SKA-Low prototype station Aperture Array Verification System 2 (AAVS2) with the Sun as the calibrator. We perform self-holography of AAVS2 and cross-holography with simultaneous observations carried out with another station Engineering Development Array 2. We find the results from the holographic techniques to be consistent among themselves as well as with a more conventional calibration technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信